Dynamics of higher order rational difference equation $x_{n+1}=(alpha+beta x_{n})/(A + Bx_{n}+ Cx_{n-k})$

Authors

  • Abu Alhalawa Muna Department of Mathematics, Faculty of Science, Birzeit University, Palestine
  • Mohammad Saleh Department of Mathematics, Faculty of Science, Birzeit University, Palestine
Abstract:

The main goal of this paper is to investigate the periodic character, invariant intervals, oscillation and global stability and other new results of all positive solutions of the equation$$x_{n+1}=frac{alpha+beta x_{n}}{A + Bx_{n}+ Cx_{n-k}},~~ n=0,1,2,ldots,$$where the parameters $alpha$, $beta$, $A$, $B$ and $C$ are positive, and the initial conditions $x_{-k},x_{-k+1},ldots,x_{-1},x_{0}$ are positive real numbers and $kin{1,2,3,ldots}$. We give a detailed description of the semi-cycles of solutions and determine conditions under which the equilibrium points are globally asymptotically stable. In particular, our paper is a generalization of the rational difference equation that was investigated by Kulenovic et al. [The Dynamics of $x_{n+1}=frac{alpha +beta x_{n}}{A+Bx_{n}+ C x_{n-1}}$, Facts and Conjectures, Comput. Math. Appl. 45 (2003) 1087--1099].

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Dynamics and behavior of a higher order rational difference equation

We study the global result, boundedness, and periodicity of solutions of the difference equation xn+1 = a+ bxn−l + cxn−k dxn−l + exn−k , n = 0, 1, . . . , where the parameters a, b, c, d, and e are positive real numbers and the initial conditions x−t, x−t+1, . . . , x−1 and x0 are positive real numbers where t = max{l, k}, l 6= k. c ©2016 All rights reserved.

full text

Global Dynamics for a Higher Order Rational Difference Equation

In this paper, some properties of all positive solutions are considered for a higher order rational difference equation, mainly for the existence of eventual prime period two solutions, the existence and asymptotic behavior of nonoscillatory solutions and the global asymptotic stability of its equilibria. Our results show that a positive equilibrium point of this equation is a global attractor ...

full text

Global Behavior of a Higher-order Rational Difference Equation

We investigate in this paper the global behavior of the following difference equation: xn+1 = (Pk(xn i0 ,xn i1 , . . . ,xn i2k ) + b)/(Qk(xn i0 ,xn i1 , . . . ,xn i2k ) + b), n = 0,1, . . ., under appropriate assumptions, where b [0, ), k 1, i0, i1, . . . , i2k 0,1, . . . with i0 < i1 < < i2k, the initial conditions xi 2k ,xi 2k+1, . . . ,x0 (0, ). We prove that unique equilibrium x = 1 of that...

full text

Global asymptotic stability of a higher order rational difference equation

In this note, we consider the following rational difference equation: xn+1 = f (xn−r1 , . . . , xn−rk )g(xn−m1 , . . . , xn−ml )+ 1 f (xn−r1 , . . . , xn−rk )+ g(xn−m1 , . . . , xn−ml ) , n= 0,1, . . . , where f ∈ C((0,+∞)k, (0,+∞)) and g ∈ C((0,+∞)l, (0,+∞)) with k, l ∈ {1,2, . . .}, 0 r1 < · · ·< rk and 0 m1 < · · ·<ml , and the initial values are positive real numbers. We give sufficient con...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 2

pages  363- 379

publication date 2017-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023