Dynamical evolution of nonclassical properties in cavity quantum electrodynamics with a single trapped ion

Authors

  • H. Naderi, M. Quantum Optics Group, Department of Physics, University of Isfahan
  • Shahidani, S. Department of Physics, University of Isfahan
  • Soltanolkotabi, M. Quantum Optics Group, Department of Physics, University of Isfahan
Abstract:

In this paper, by considering a system consisting of a single two-level trapped ion interacting with a single-mode quantized radiation field inside a lossless cavity, the temporal evolution of the ionic and the cavity-field quantum statistical properties including photon-counting statistics, quantum fluctuations of the field quadratures and quantum fluctuations of the ionic dipole variables are investigated. It is found that in the Lamb-Dicke limit it is possible for the cavity-field to evolve into a nonclassical state (squeezed state or state with sub-Poissonian statistics) and this possibility is solely affected by the internal and external quantum dynamics of the ion. Also it is found that the dipole squeezing may occur in the dynamics of the trapped ion which sensitively depends on quantum statistics of the cavity-field.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Deterministic cavity quantum electrodynamics with trapped ions

We have employed radio-frequency trapping to localize a single Ca-ion in a high-finesse optical cavity. By means of laser Doppler cooling, the position spread of the ion’s wavefunction along the cavity axis was reduced to 42 nm, a fraction of the resonance wavelength of ionized calcium (λ = 397 nm). By controlling the position of the ion in the optical field, continuous and completely determini...

full text

Calculation of Kolmogorov Entropy in Cavity Quantum Electrodynamics

In this paper Kolomogorov entropy of a simulated cavity quantum electrodynamics in a multi-partite system consisting of eight quantum dots in interaction with one cavity mode has been estimated. It has been shown that the Kolmogorov Entropy monotonically increases with the increasing coupling strength, which is a sufficient condition for chaotic behavior under ultrastrong coupling regime. The a...

full text

Generation of Nonclassical States of the Radiation Field in the System of a Single Trapped Atom in a Cavity within the First Order of the Lamb-Dicke Approximation

In this paper, we propose a theoretical scheme for the generation of non-classical states of the cavity field in a system of a single trapped atom via controlling the Lamb-Dicke parameter. By exploiting the super-operator method, we obtain an analytical expression for the density operator of the system by which we examine the dynamical behaviors of the atomic population inversion, the phase-spa...

full text

Cavity sideband cooling of a single trapped ion.

We report a demonstration and quantitative characterization of one-dimensional cavity cooling of a single trapped (88)Sr(+) ion in the resolved-sideband regime. We measure the spectrum of cavity transitions, the rates of cavity heating and cooling, and the steady-state cooling limit. The cavity cooling dynamics and cooling limit of 22.5(3) motional quanta, limited by the moderate coupling betwe...

full text

Cavity quantum electrodynamics with semiconductor quantum dots

Cavity quantum electrodynamics with semiconductor quantum dots Pascale Senellart CNRS, Laboratoire de Photonique et de Nanostructures, Marcoussis, France Many quantum devices can be implemented by controlling the spontaneous emission of a semiconductor quantum dots in a microcavity: bright sources of quantum light, delayed photon entangler, optical quantum gates... In this talk, I will present ...

full text

Cavity quantum electrodynamics

The simplest model in quantum optics deals with a single two-level atom interacting with a single mode of the radiation field. This ideal situation is implemented in Cavity Quantum Electrodynamics experiments, using high quality microwave or optical cavities as photon boxes. It provides a test bench for fundamental quantum processes and a promising ground for quantum information processing.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue None

pages  55- 60

publication date 2007-06

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023