Dynamic Modeling of the Electromyographic and Masticatory Force Relation Through Adaptive Neuro-Fuzzy Inference System Principal Dynamic Mode Analysis
Authors
Abstract:
Introduction: Researchers have employed surface electromyography (EMG) to study the human masticatory system and the relationship between the activity of masticatory muscles and the mechanical features of mastication. This relationship has several applications in food texture analysis, control of prosthetic limbs, rehabilitation, and teleoperated robots. Materials and Methods: In this paper, we proposed a model by combining the concept of fuzzy interface systems and principal dynamic mode analysis (PDM). We hypothesized that the proposed approach would provide nonlinear and dynamic characteristics improving the estimation results compared to those obtained by the classical PDM analysis and still having the benefits of a PDM model including the sparse presentation of the system dynamics. After developing PDM, the nonlinear polynomial function of the PDM model was replaced with adaptive neuro-fuzzy inference system (ANFIS) network architecture. After training, the relevant fuzzy rules were extracted and used for creating the fuzzy block (as the nonlinear function block) and predicting the output signal. The proposed approach was later employed to predict bite force using EMG of the temporalis and masseter muscles. Results: Our proposed method outperformed the classical PDM analysis (in terms of our evaluation criteria) in predicting masticatory force . The inter-subject evaluation of the model performance proved that the model created using the data of one subject could be used for predicting masticatory force in other subjects. Conclusion: The proposed model can be helpful in food analysis to predict masticatory force based on the electrical activity of the masseter and temporalis muscles.
similar resources
modeling job performance using optimized adaptive neuro-fuzzy inference system
using current employee performance data to predict the future behavior of the applicants is an interesting area which can broaden new horizons of knowledge lay in the organization. because of inherent ambiguity and uncertainty, cognitive limitations of the human mind make unknown behaviors of very complex systems difficult to predict. as a consequence, it is necessary to model the imprecise mod...
full textModeling of Weld Bead Geometry Using Adaptive Neuro-Fuzzy Inference System (ANFIS) in Additive Manufacturing
Additive Manufacturing describes the technologies that can produce a physical model out of a computer model with a layer-by-layer production process. Additive Manufacturing technologies, as compared to traditional manufacturing methods, have the high capability of manufacturing the complex components using minimum energy and minimum consumption. These technologies have brought about the possibi...
full textAdaptive Fuzzy Dynamic Sliding Mode Control of Nonlinear Systems
Two phenomena can produce chattering: switching of input control signal and the large amplitude of this switching (switching gain). To remove the switching of input control signal, dynamic sliding mode control (DSMC) is used. In DSMC switching is removed due to the integrator which is placed before the plant. However, in DSMC the augmented system (system plus the integrator) is one dimension bi...
full textA Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation
In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...
full textPrediction of the Carbon nanotube quality using adaptive neuro–fuzzy inference system
Multi-walled carbon nanotubes (CNTs) are synthesized with the assistance of water vapor in a horizontal reactor using methane over Co-Mo/MgO catalyst through chemical vapor deposition method. The application of Adaptive Neuro-Fuzzy Inference System (ANFIS) technique for modeling the effect of important parameters (i.e. temperature, reaction time and amount of H2O vapor) on the qualit...
full textDynamic Evolving Neuro-Fuzzy Inference System for Mortality Prediction
In this paper we propose a dynamic evolving neuro-fuzzy inference system (DENFIS) to forecast mortality. DENFIS is an adaptive intelligent system suitable for dynamic time series prediction. An Evolving Cluster Method (ECM) drives the learning process. The typical fuzzy rules of the neurofuzzy systems are updated during the learning process and adjusted according to the features of the data. Th...
full textMy Resources
Journal title
volume 15 issue 2
pages 78- 86
publication date 2018-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023