Dynamic Analysis of Cylindrically Layered Structures Reinforced by Carbon Nanotube Using MLPG Method
Authors
Abstract:
This paper deals with the dynamic analysis of stress field in cylindrically layeredstructures reinforced by carbon nanotube (CLSRCN) subjected to mechanical shock loading.Application of meshless local integral equations based on meshless local Petrov-Galerkin(MLPG) method is developed for dynamic stress analysis in this article. Analysis is carriedout in frequency domain by applying the Laplace transformation on governing equations andthen the stresses are transferred to time domain, using Talbot inversion Laplace techniques.The mechanical properties of the nanocomposite are mathematically simulated using fourtypes of carbon nanotube distributions in radial volume fraction forms. The propagation ofstresses is indicated through radial direction for various grading patterns at different timeinstants. The effects of various grading patterns on stresses are specifically investigated.Numerical examples, presented in the accompanying section 4 of this paper, show thatvariation of *CN V has no significant effect on the amplitude of radial stresses. Examplesillustrate that stress distributions in cylindrical layer structures made of a CNT type aremore sensitive rather than other grading pattern types of CNTs. Results derived in thisanalysis are compared with FEM and previous published work and a good agreement isobserved between them.
similar resources
dynamic analysis of cylindrically layered structures reinforced by carbon nanotube using mlpg method
this paper deals with the dynamic analysis of stress field in cylindrically layeredstructures reinforced by carbon nanotube (clsrcn) subjected to mechanical shock loading.application of meshless local integral equations based on meshless local petrov-galerkin(mlpg) method is developed for dynamic stress analysis in this article. analysis is carriedout in frequency domain by applying the laplace...
full textBuckling Analysis of Spherical Composite Panels Reinforced by Carbon Nanotube
In this study, the buckling behavior of moderately thick Carbon Nano-Tube (CNT)-reinforced spherical composite panels subjected to both uniaxial and biaxial loads is examined. The uniform and various kinds of functionally graded distributions of the CNT are considered. The mechanical properties of the nanocomposite panels are estimated using the modified rule of mixture. Based on the first-orde...
full textAnalysis of Cylindrically Conformal Microstrip Structures Using an Iterative Method
An efficient iterative method is presented for the fast analysis of cylindrically conformal microstrip structures. Based on the transmission line modeling (TLM) method and the fast modal transform (FMT) theory, this technique accelerates the process of the calculation by introducing the concept of the transverse electromagnetic waves instead of the transverse fields considered in the traditiona...
full textStatic and modal analysis of parabolic-boundary functionalized Carbon nanotube-reinforced composite plates using FEM
This paper investigates the effect of different methods of carbon nanotubes distribution in a thin matrix on static and dynamic behavior of the nanocomposite. Five different symmetric patterns of distribution are considered, including four parabolic patterns and a linear one. For each pattern, the effective mechanical properties of the resultant nanocomposite are calculated using the rule of mi...
full textStatic and modal analysis of parabolic-boundary functionalized Carbon nanotube-reinforced composite plates using FEM
This paper investigates the effect of different methods of carbon nanotubes distribution in a thin matrix on static and dynamic behavior of the nanocomposite. Five different symmetric patterns of distribution are considered, including four parabolic patterns and a linear one. For each pattern, the effective mechanical properties of the resultant nanocomposite are calculated using the rule of mi...
full textDynamic Characteristics of Functionalized Carbon Nanotube Reinforced Epoxy Composites: An Experimental Approach
The effects of amine functionalization of carbon nanotubes (CNTs) and CNTs weight percent (wt. %), on the first bending natural frequencies and damping properties of CNT/epoxy composites are investigated in this paper. CNTs and amine functionalized CNTs (AFCNTs), with two different weight percentages, are used to manufacture the beam shaped specimens. Epoxy, CNT/epoxy (0.25 and 0.5 wt. % of CNT...
full textMy Resources
Journal title
volume 48 issue 2
pages 235- 250
publication date 2015-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023