Duality for the class of a multiobjective problem with support functions under $K$-$G_f$-invexity assumptions
Authors
Abstract:
In this article, we formulate two dual models Wolfe and Mond-Weir related to symmetric nondifferentiable multiobjective programming problems. Furthermore, weak, strong and converse duality results are established under $K$-$G_f$-invexity assumptions. Nontrivial examples have also been depicted to illustrate the theorems obtained in the paper. Results established in this paper unify and extend some previously known results appeared in the literature
similar resources
Multiobjective Mixed Symmetric Duality with Invexity
The usual duality results are established for mixed symmetric multiobjective dual programs without nonnegativity constraints using the notion of invexity/ generalized invexity which has allowed weakening various types of convexity/ generalized convexity assumptions. This mixed symmetric dual formulation unifies two existing symmetric dual formulations in the literature.
full textSymmetric duality for multiobjective fractional variational problems with generalized invexity
The concept of symmetric duality for multiobjective fractional problems has been extended to the class of multiobjective variational problems. Weak, strong and converse duality theorems are proved under generalized invexity assumptions. A close relationship between these problems and multiobjective fractional symmetric dual problems is also presented. 2005 Elsevier Inc. All rights reserved.
full textOptimality Conditions and Duality in Multiobjective Programming with Invexity*
( , ) ρ Φ − invexity has recently been introduced with the intent of generalizing invex functions in mathematical programming. Using such conditions we obtain new sufficiency results for optimality in multiobjective programming and extend some classical duality properties.
full textAn Efficient Algorithm for Reducing the Duality Gap in a Special Class of the Knapsack Problem
A special class of the knapsack problem is called the separable nonlinear knapsack problem. This problem has received considerable attention recently because of its numerous applications. Dynamic programming is one of the basic approaches for solving this problem. Unfortunately, the size of state-pace will dramatically increase and cause the dimensionality problem. In this paper, an efficient a...
full textAn Efficient Algorithm for Reducing the Duality Gap in a Special Class of the Knapsack Problem
A special class of the knapsack problem is called the separable nonlinear knapsack problem. This problem has received considerable attention recently because of its numerous applications. Dynamic programming is one of the basic approaches for solving this problem. Unfortunately, the size of state-pace will dramatically increase and cause the dimensionality problem. In this paper, an efficient a...
full textNondifferentiable multiobjective programming under generalized dI-invexity
In this paper, we are concerned with a nondifferentiable multiobjective programming problem with inequality constraints. We introduce four new classes of generalized convex functions by combining the concepts of weak strictly pseudoinvex, strong pseudoinvex, weak quasi invex, weak pseudoinvex and strong quasi invex functions in Aghezzaf and Hachimi [Numer. Funct. Anal. Optim. 22 (2001) 775], d-...
full textMy Resources
Journal title
volume 43 issue 7
pages 2233- 2258
publication date 2017-12-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023