DRILL WEAR PREDICTION SYSTEM USING OF MOTOR CURRENT AND FUZZY LOGIC METHOD
Authors
Abstract:
In automation flexible manufacturing systems, tool wear detection during the cutting process is one of the most important considerations. This study presents an intelligent system for online tool condition monitoring in drilling process .In this paper, analytical and empirical models have been used to predict the thrust and cutting forces on the lip and chisel edges of a new drill. Also an empirical model is used to estimate tool wear rate and force values on the edges of the worn drill. By using of the block diagram of machine tool drives, the changes in the feed and spindle motor currents are simulated, as wear rate increases. To predict tool wear rate in drill, Fuzzy logic capabilities have been used to develop intelligent system. The simulated results presented in MATLAB software show the effectiveness of the proposed system for on-line drill wear monitoring.
similar resources
Drill Wear Prediction System Using of Motor Current and Fuzzy Logic Method
In automation flexible manufacturing systems, tool wear detection during the cutting process is one of the most important considerations. This study presents an intelligent system for online tool condition monitoring in drilling process .In this paper, analytical and empirical models have been used to predict the thrust and cutting forces on the lip and chisel edges of a new drill. Also an empi...
full textAn Improved MPPT Method of Wind Turbine Based on HCS Method by Using Fuzzy Logic System
In this paper presents a Maximum Power Point Tracking (MPPT) technique based on the Hill Climbing Search (HCS) method and fuzzy logic system for Wind Turbines (WTs) including of Permanent Magnet Synchronous Generator (PMSG) as generator. In the conventional HCS method the step size is constant, therefor both steady-state response and dynamic response of method cannot provide at the same time an...
full textDrill wear monitoring based on current signals
This paper presents a simple method for on-line wear state monitoring and tool replacement decision-making using spindle motor and feed motor current signals in drilling. In the paper, the effects of tool wear as well as cutting parameters on the cutting current signals are analyzed. The models on the relationship between the current signals and the cutting parameters are established under diff...
full textDesign and PLC Implementation for Speed Control of DC Motor using Fuzzy Logic
In this article, a speed control of DC motor is designed and illustrated using fuzzy logic-based programmable logic controller (PLC). The DC motor is an attractive part of electrical equipment in many industrial applications requiring variable speed and load specifications due to its ease of controllability. The designed system is consisted of three main parts including programmable logic contr...
full textPrediction and evaluation of runoff data in south of Qazvin watershed, using a fuzzy logic technique
The important criteria for designing in the most of hydrologic and hydraulic construction projects are based on runoff or peak-flow of water. Mostly, this measure and criterion is calculated or estimated by stochastic data. Another feature of these data that are used in watershed hydrological studies is their impreciseness. Therefore, in this study, in order to deal with uncertainty and impreci...
full textFuzzy Logic Control of a Switched Reluctance Motor
Because of extreme local saturation at pole tips of excited phase and uncircular shape of rotor and stator, a Swithed Reluctance Motor (SRM) does not have a simple and accurate mathematical model. Therefore, the output control of this motor requires a robust controller which is not based on an accurate model of the process. Fuzzy controllers, to some extent, will satisfy these requirements. Tet...
full textMy Resources
Journal title
volume 9 issue 2
pages 15- 29
publication date 2012-06
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023