DNA Nanotubes Coupled with Magnetic Nanoparticles as a Platform for Colorimetric Biosensors
Authors
Abstract:
This study describes the fabrication techniques for two forms of magnetic DNA nanotubes (MDNTs) and their applications as platforms for developing colorimetric assays. The first form of MDNTs was DNTs filled-up with magnetic nanoparticles (MNPs) and the second one was DNTs arayed with MNPs on their extrior surfaces. Then the both forms of MDNTs were employed as platforms for attaching a specific insulin aptamer. The sensitivity and accuracy of the insulin measurement using both platforms were studied and compared with enzyme-linked immunosorbent assay (ELISA) as the standard method for the measurement of insulin in cliniccal laboratories. Applying the magnetic field to MDNTs led to enhance the ability of insulin capturing by the aptamer array in serum and subsequently by removing unspecified contents led to precised detection. For specific detection of insulin and its measurement in this study, a G-rich DNA aptamer with HRP-mimicking activity was used that simulated the peroxidase performance when the insulin was trapped with the aptamer. The presence of MDNTs made a high flexibility, a greater convergence of the connectivity to superficial aptamers, and hence the availability of these aptamers to increase the target molecules and subsequently increased the sensitivity of the measurements. This colorimetric method can be used as a novel biosensores for detection of any target molecules.
similar resources
Colorimetric biosensors based on DNA-nanoparticle conjugates.
In this review, we present an overview of the technologies in colorimetric biosensors based on DNA-nanoparticle conjugates. Two types of DNA-nanoparticles aggregation assays are summarized. One of the methods relies on cross-linking of the gold nanoparticle (GNP) by hybridization. The crosslinking system was used not only to detect target DNA sequences, but also to detect metal ions or small mo...
full textMultilayer enzyme-coupled magnetic nanoparticles as efficient, reusable biocatalysts and biosensors.
Herein we report the development of a highly active, magnetically retrievable and reusable biocatalyst using multilayer enzyme coupled-magnetic nanoparticles (MNPs) prepared by layer-by-layer assembly using two well-studied enzymes, horseradish peroxidase (HRP) and glucose oxidase (GOX), as a model enzyme system. We show that by combining the use of a biocompatible linker as well as biospecific...
full textAdvancement in electrochemical DNA-biosensors for GMOs detection: A review
Genetically modified organisms (GMOs) are plants or animals whose genetic make-up has been transformed by recombinant DNA technology, which has new features such as resistance to herbicides, virus and insect. Recently, genetic modification of food products has increased in order to reduce world poverty and hunger and increase food production However, the impact of GMOs on the human health is a ...
full textRecent Updates of DNA Incorporated in Carbon Nanotubes and Nanoparticles for Electrochemical Sensors and Biosensors
Innovations in the field of electrochemical sensors and biosensors are of much importance nowadays. These devices are designed with probes and micro electrodes. The miniaturized designs of these sensors allow analyses of materials without damaging the samples. Some of these sensors are also useful for real time analysis within the host system, so these sensors are considered to be more advantag...
full textDispersive liquid-liquid microextraction coupled with magnetic nanoparticles for extraction of zearalenone in wheat samples
A new, sensitive and fast dispersive liquid-liquid microextraction (DLLME) coupled with micro-solid phase extraction (μ-SPE) was developed for determination of zearalenone (ZEN) in wheat samples. The DLLME was performed using acetonitrile/water (80:20 v/v) as the disperser solvent and 1-octanol as the extracting solvent. The acetonitrile/water (80:20 v/v) solvent was also used to extract ZEN f...
full textMagnetic and gold-coated magnetic nanoparticles as a DNA sensor.
In this study, we report the chemical synthesis and functionalization of magnetic and gold-coated magnetic nanoparticles and the immobilization of single-stranded biotinylated oligonucleotides onto these particles. Selected sequences specific to the BRCA1 gene were used as a test platform. The binding of oligonucleotides to these particles was achieved through a streptavidin-biotin bridge via a...
full textMy Resources
Journal title
volume 5 issue 1
pages 63- 74
publication date 2020-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023