Discrete Element Modeling of Dynamic Compaction with Different Tamping Condition

Authors

Abstract:

Dynamic Compaction (DC) is a common deep compaction method that is usually used for densification of coarse-grained soils. Although traditional continuum-based models such as the Finite Element Method can be successfully applied for assessment of stress distributions or deformations induced by DC, they are typically not adequate for capturing the grain scale mechanisms of soil behavior under impact. In contrast, numerical models such as Discrete Element Method (DEM) in which the interaction of constituting distinct elements is explicitly simulated are promising for simulation of DC process. In this study, dynamic compaction in a dry rockfill was simulated through a two-dimensional DEM model. Based on the developed model, a series of analyses with various tamper weights and drop heights were conducted to investigate the effects of important factors such as energy and momentum per drop on DC results. Comparison of the obtained results with experimental observations reveal the capability of DEM for simulation of DC. The numerical simulations also confirm the positive effect of using conical-based tampers in DC process.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

modeling of different subsoiler tines performance using discrete element method

for designing tillage implements it would be better to estimate soil forces exerted to the implements. many researches showed that numerical method of discrete element method (dem) is the cheapest and fastest technique for modeling granular material such as soil and especially sandy soil. in this study, paraplow and bentleg tines performance was compared with conventional tine using experimenta...

full text

Discrete Element Method Simulation of Railway Ballast Compactness During Tamping Process

Railway ballast tamping operation is employed in order to restore the geometry of railway track distorted by train traffics. In this paper, based on analysis of tamping principle, the discrete element analysis model of railway ballast is created using the discrete element method, numerical simulations are performed to study the change of railway ballast compactness during tamping process. This ...

full text

Impact of Tamper Shape on the Efficiency and Vibrations Induced During Dynamic Compaction of Dry Sands by 3D Finite Element Modeling

Dynamic compaction is a soil improvement method which has been widely used for the increase of bearing capacity through stress wave propagation during heavy tamping. The cost and time of project implementation can be effectively curtailed by developing a model that can be used in the design of dynamic compaction operations. The numerical models offered so far are mostly one or two-dimensional, ...

full text

Numerical simulation of dynamic soil compaction with vibratory compaction equipment

Roller drums make use of various shapes and their dynamic compaction effect is achieved by different kinds of dynamic excitation systems. The bearing capacity of layered soil constructions can be measured during the soil compaction process. The finite element method has been applied for dynamic analyses using elastic models. For the realistic simulation of the dynamic compaction process it is n...

full text

Modeling and Simulation of Modern Industrial Screens using Discrete Element Method (TECHNICAL NOTE)

With progress in mineral processing technologies, particle size classification equipment has also been changed to satisfy the needs of modern plants. Accordingly, design, manufacturing and utilizing of banana screens in mineral processing plants have led to increased screening efficiency at industrial scale. Banana screen is an important invention occurred in past decade which increases screeni...

full text

Discrete Element Modeling of Dike-induced Deformation

Introduction: The Tharsis region of Mars is characterized by large volcanic and tectonic centers with distinct sets of graben systems. Many of the radially oriented grabens have been inferred to form in response to intrusion of magmatic dikes. This interpretation is based primarily upon early physical and numerical (boundary element) models that were developed originally to understand surface d...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 53  issue 1

pages  173- 188

publication date 2020-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023