Directed domination in oriented hypergraphs
Authors
Abstract:
ErdH{o}s [On Sch"utte problem, Math. Gaz. 47 (1963)] proved that every tournament on $n$ vertices has a directed dominating set of at most $log (n+1)$ vertices, where $log$ is the logarithm to base $2$. He also showed that there is a tournament on $n$ vertices with no directed domination set of cardinality less than $log n - 2 log log n + 1$. This notion of directed domination number has been generalized to arbitrary graphs by Caro and Henning in [Directed domination in oriented graphs, Discrete Appl. Math. (2012) 160:7--8.]. However, the generalization to directed r-uniform hypergraphs seems to be rare. Among several results, we prove the following upper and lower bounds on $ora{Gamma}_{r-1}(H(n,r))$, the upper directed $(r-1)$-domination number of the complete $r$-uniform hypergraph on $n$ vertices $H(n,r)$, which is the main theorem of this paper:[c (ln n)^{frac{1}{r-1}} le ora{Gamma}_{r-1}(H(n,r)) le C ln n,]where $r$ is a positive integer and $c= c(r) > 0$ and $C = C(r) > 0$ are constants depending on $r$.
similar resources
Directed domination in oriented graphs
A directed dominating set in a directed graph D is a set S of vertices of V such that every vertex u ∈ V (D) \ S has an adjacent vertex v in S with v directed to u. The directed domination number of D, denoted by γ(D), is the minimum cardinality of a directed dominating set in D. The directed domination number of a graph G, denoted Γd(G), which is the maximum directed domination number γ(D) ove...
full textIndependent domination in directed graphs
In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...
full textTwin minus domination in directed graphs
Let $D=(V,A)$ be a finite simple directed graph. A function$f:Vlongrightarrow {-1,0,1}$ is called a twin minus dominatingfunction (TMDF) if $f(N^-[v])ge 1$ and $f(N^+[v])ge 1$ for eachvertex $vin V$. The twin minus domination number of $D$ is$gamma_{-}^*(D)=min{w(f)mid f mbox{ is a TMDF of } D}$. Inthis paper, we initiate the study of twin minus domination numbersin digraphs and present some lo...
full textDomination game on uniform hypergraphs
In this paper we introduce and study the domination game on hypergraphs. This is played on a hypergraph H by two players, namely Dominator and Staller, who alternately select vertices such that each selected vertex enlarges the set of vertices dominated so far. The game is over if all vertices of H are dominated. Dominator aims to finish the game as soon as possible, while Staller aims to delay...
full textSigned total Roman k-domination in directed graphs
Let $D$ be a finite and simple digraph with vertex set $V(D)$.A signed total Roman $k$-dominating function (STR$k$DF) on$D$ is a function $f:V(D)rightarrow{-1, 1, 2}$ satisfying the conditionsthat (i) $sum_{xin N^{-}(v)}f(x)ge k$ for each$vin V(D)$, where $N^{-}(v)$ consists of all vertices of $D$ fromwhich arcs go into $v$, and (ii) every vertex $u$ for which$f(u)=-1$ has a...
full textSymmetry in Domination for Hypergraphs with Choice
Kenneth S. Berenhaut 1,*, Brendan P. Lidral-Porter 1, Theodore H. Schoen 1 and Kyle P. Webb 2 1 Department of Mathematics and Statistics, Wake Forest University, Winston-Salem, NC 27106, USA; [email protected] (B.P.L.-P.); [email protected] (T.H.S.) 2 Department of Statistics, Virginia Tech University, Blacksburg, VA 24061, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-336-758-...
full textMy Resources
Journal title
volume 4 issue 2
pages 173- 183
publication date 2019-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023