Direct Absorption Solar Collector using Carbon Nanotubes Nanofluid: An Experimental Investigation

Authors

Abstract:

In this study, the efficiency of direct absorption solar collector (DASC) using carbon nanotube nanofluid in the mixture of water and ethylene glycol as the base fluid was experimentally investigated and compared with the efficiency of the flat plate solar collector (FPSC). The results show that the maximum efficiency of the DASC using the base fluid and absorptive bottom surface is about 4.7% and using carbon nanotube nanofluid is about 22% more than that of FPSC. According to the results, the performance of DASC with the application in the domestic solar water heaters, is better than FPSC at the same operating condition.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Nanofluid-Based Direct Absorption Solar Collector

This Article is brought to you for free and open access by the Mechanical Engineering at Digital Commons @ Loyola Marymount University and Loyola Law School. It has been accepted for inclusion in Mechanical Engineering Faculty Works by an authorized administrator of Digital Commons@Loyola Marymount University and Loyola Law School. For more information, please contact [email protected]. Re...

full text

An experimental investigation on the performance of a symmetric conical solar collector using SiO2/water nanofluid

One of the effective methods to improve the thermal efficiency of solar collectors is using nanofluids as the coolant. The present study experimentally investigated the effect of SiO2/water nanofluid with 1% mass fraction on the performance of a symmetric collector, i.e. conical solar collector. The conical solar collector with 1 m2 area and normal to the earth was tested in Ahvaz, a city in th...

full text

Experimental investigation on performance comparison of nanofluid-based direct absorption and flat plate solar collectors

In the present work, a prototype of a new type of solar collectors, which called Direct Absorption Solar Collector, was built and its thermal performance is experimentally compared with conventional flat plate solar collector under transient and steady state conditions. Different volume fractions of multi wall carbon nanotubes in water and ethylene glycol mixture (70%:30% in volume) were used a...

full text

Experimental investigation on performance comparison of nanofluid-based direct absorption and flat plate solar collectors

In the present work, a prototype of a new type of solar collectors, which called Direct Absorption Solar Collector, was built and its thermal performance is experimentally compared with conventional flat plate solar collector under transient and steady state conditions. Different volume fractions of multi wall carbon nanotubes in water and ethylene glycol mixture (70%:30% in volume) were used a...

full text

an experimental investigation on the performance of a symmetric conical solar collector using sio2/water nanofluid

one of the effective methods to improve the thermal efficiency of solar collectors is using nanofluids as the coolant. the present study experimentally investigated the effect of sio2/water nanofluid with 1% mass fraction on the performance of a symmetric collector, i.e. conical solar collector. the conical solar collector with 1 m2 area and normal to the earth was tested in ahvaz, a city in th...

full text

Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors' tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector op...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 21  issue 2

pages  99- 109

publication date 2018-07

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023