Diophantine Equations Related with Linear Binary Recurrences

Authors

  • E. Kilic Department of Mathematics, TOBB University of Economics and Technology, TR-06560 Ankara, Turkey
  • I. Akkus Department of Mathematics, Faculty of Arts and Science, Kırıkkale University, TR-71450 Kırıkkale, Turkey
  • N. Omur Department of Mathematics, Faculty of Arts and Science, Kocaeli University, TR-41380 Kocaeli, Turkey
Abstract:

In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This paper continues and extends a previous work of Bahramian and Daghigh.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Diophantine Equations with Linear Recurrences an Overview of Some Recent Progress

We shall discuss some known problems concerning the arithmetic of linear recurrent sequences. After recalling briefly some longstanding questions and solutions concerning zeros, we shall focus on recent progress on the so-called ”quotient problem” (resp. ”d-th root problem”), which in short asks whether the integrality of the values of the quotient (resp. d-th root) of two (resp. one) linear re...

full text

Diophantine Problems with Linear Recurrences via the Subspace Theorem

In this paper we give an overview over recent developments (initiated by P. Corvaja and U. Zannier in [3]) on Diophantine problems where linear recurring sequences are involved and which were solved by using W.M. Schmidt’s Subspace Theorem. Moreover, as a new application, we show: let (Gn) and (Hn) be linear recurring sequences of integers defined by Gn = c1α n 1 + c2α n 2 + · · ·+ ctα t and Hn...

full text

Solving Linear Diophantine Equations

An overview of a family of methods for nding the minimal solutions to a single linear Diophantine equation over the natural numbers is given. Most of the formal details were dropped, some illustrations that might give some intuition on the methods being presented instead.

full text

Combinatorial Recurrences and Linear Difference Equations

In this work we introduce the triangular arrays of depth greater than 1 given by linear recurrences, that generalize some well-known recurrences that appear in enumerative combinatorics. In particular, we focussed on triangular arrays of depth 2, since they are closely related to the solution of linear three–term recurrences. We show through some simple examples how these triangular arrays appe...

full text

Small solutions of linear Diophantine equations

Let Ax = B be a system of m x n linear equations with integer coefficients. Assume the rows of A are linearly independent and denote by X (respectively Y) the maximum of the absolute values of the m x m minors of the matrix A (the augmented matrix (A, B)). If the system has a solution in nonnegative integers, it is proved that the system has a solution X = (xi) in nonnegative integers with xi <...

full text

Optical solutions for linear Diophantine equations

Determining whether a Diophantine equation has a solution or not is the most important challenge in solving this type of problems. In this paper a special computational device which uses light rays is proposed to answer this question, namely check the existence of nonnegative solutions for linear Diophantine equations. The way of representation for this device is similar to an directed graph, h...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 17  issue 1

pages  11- 26

publication date 2022-04

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023