Differential Flatness Method Based on Pre-set Guidance and Control Subsystem Design for a Surface to Surface Flying Vehicle (TECHNICAL NOTE)

Authors

  • Jalal karimi Space Research Institute, Malek Ashtar University of Technology
Abstract:

The purpose of this paper is to design a guidance and control system and evaluate the performance of a sample surface‑to‑surface flying object based on preset guidance with a new prospective. In this study, the main presented idea is usage of unique property of governor differential equations in order to design and develop a controlled system. Thereupon a set of system output variables have been examined by specific tests as candidate of flattened variables. It is proved that the dynamism of the studying system has a property of differential flatness. This property as a basement for observing all of the system dynamic variables could be a perfect option to remove lack of observability of nonlinear systems. According to the information gained in the procedure of flatness demonstrating, there was a similarity between the control command generating in feedback linearization and flat systems tests. This similarity led to the application of the flat systems technique for the mentioned control method. The guidance and control system suggested in this paper is able to follow a set of specific reference trajectories in order to target different ranges. This ability without recalculating controller gains could be done only by having the rate of rotate of flying object in middle phase of maneuver. To validate the proposed FBC for the studied problem, another usual control method has been investigated. For this purpose, the linear quadratic regulator as straight forward control method in optimal control field has been applied. This feature reveals full compatibility between controller block and reference trajectory generator block.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A New Guidance Method for Surface to Surface Ballistic Missiles without Mandatory Engine Cut-Off

In this paper, a new guidance method for surface to surface ballistic missiles without mandatory engine cut-off will be presented. The complexity of solid fuel engine cut-off demands a comprehensive method for guiding these missiles. In the method presented in this paper, a certain guidance law is applied such that by transmitting appropriate commands to the control system, by changing the miss...

full text

A New Guidance Method for Surface to Surface Ballistic Missiles without Mandatory Engine Cut-Off

In this paper, a new guidance method for surface to surface ballistic missiles without mandatory engine cut-off will be presented. The complexity of solid fuel engine cut-off demands a comprehensive method for guiding these missiles. In the method presented in this paper, a certain guidance law is applied such that by transmitting appropriate commands to the control system, by changing the miss...

full text

a new guidance method for surface to surface ballistic missiles without mandatory engine cut-off

in this paper, a new guidance method for surface to surface ballistic missiles without mandatory engine cut-off will be presented. the complexity of solid fuel engine cut-off demands a comprehensive method for guiding these missiles. in the method presented in this paper, a certain guidance law is applied such that by transmitting appropriate commands to the control system, by changing the miss...

full text

Control System Design for a Surface Effect Ship by Linear-Quadratic Regulator Method

In this paper, the main goal is to reduce the heave motion between a surface effect ship (SES) and a wind turbine in order to safely transfer equipment and person to SES. For this purpose, an LQR control system is designed to damp the vertical motion of the surface effect ship in critical sea states including high-frequency and high amplitude regular waves as well as high frequency irregular wa...

full text

An Autopilot Based on a Local Control Network Design for an Unmanned Surface Vehicle

Over recent years, a number of marine autopilots designed using linear techniques have underperformed owing to their inability to cope with nonlinear vessel dynamics. To this end, a new design framework for the development of nonlinear autopilots is proposed. Local Control Networks (LCNs) can be used in the design of nonlinear control systems. In this paper, a LCN approach is taken in the desig...

full text

Design Optimization of Axial Flux Surface Mounted Permanent Magnet Brushless DC Motor For Electrical Vehicle Based on Genetic Algorithm

This paper presents the design optimization of axial flux surface mounted Permanent Magnet Brushless DC motor based on genetic algorithm for an electrical vehicle application. The rating of the motor calculated form vehicle dynamics is 250 W, 150 rpm. The axial flux surface mounted Permanent Magnet Brushless DC (PMBLDC) motor was designed to fit in the rim of the wheel. There are several design...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 30  issue 6

pages  912- 919

publication date 2017-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023