Dicationic Ionic Liquid as the Recyclable Catalyst for the Synthesis of Quinoxaline Derivatives

Authors

  • Liu Xiaobing College of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, 343009, P.R. CHINA
  • Lu Ming Chemical Engineering College, Nanjing University of Science and Technology, Nanjing, 210094, P.R. CHINA
Abstract:

An efficient and eco-friendly protocol for the synthesis of quinoxaline derivatives employing a condensation reaction between 1,2-diketone and 1,2-diaminobenzene derivative has been developed. The reaction of  1,2-diketone and 1,2-diaminobenzene derivative was carried out in water at room temperature using 10 mol% of task-specific dicationic ionic liquid as a catalyst. The results show that the reactions catalyzed by the dicationic ionic liquid proceeded smoothly to give the corresponding products. High yields of the products, short reaction times, mild reaction conditions and simple experimental procedure make this protocol complementary to the existing methods. Further, the catalyst can be reused for several times without obvious loss of the catalytic activity.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Brønsted Acidic Phosphonium Based Ionic Liquid Functionalized SBA-15 [HO3S-PhospIL@SBA-15]: Green, Recyclable, and Efficient Catalyst for the Synthesis of Pyrano[3,2-c]Chromenone Derivatives

The surface of SBA-15 was modified by diphenylphosphine; then, it was treated with butane sultone and sulfuric acid to obtain Brønsted acid HO3S-phosphonium based ionic liquid functionalized SBA-15 with HSO4- as a counteranion. It efficiently catalyzed synthesis of pyrano[3,2-c]chromenone derivatives through the reaction of 4-hydroxycoumarin and chalcones at...

full text

Synthesis of densely functionalized chromenes using a magnetic recoverable ionic liquid as the catalyst

In the present study, robust, versatile and straightforward strategy for the diversity-oriented convergent synthesis of a vast range of highly functionalized and biologically effective chromenes is introduced with the reaction of malononitrile, dimedone/cyclohexadione/4-hydroxycoumarin and benzaldehydes in the presence of [γ-Fe2O3@HAp-Si(CH2)3BF4@DMIM] as the catalyst. The structures of all the...

full text

A selenium-based ionic liquid as a recyclable solvent for the catalyst-free synthesis of 3-selenylindoles.

The ionic liquid 1-butyl-3-methylimidazolium methylselenite, [bmim][SeO2(OCH3)], was successfully used as solvent in the catalyst-free preparation of 3-arylselenylindoles by the reaction of indole with ArSeCl at room temperature. The products were obtained selectively in good yields without the need of any additive and the solvent was easily reused for several cycles with good results.

full text

Brönsted acidic ionic liquid as a recyclable catalyst for the one pot four-component synthesis of substituted pyrano[2,3-c]pyrazoles

An efficient, mild and environmentally friendly method was reported for the synthesis of An efficient, mild and environmentally friendly method was reported for the synthesis of pyranopyroles from aryl aldehydes, ethyl acetoacetate, malononitrile and hydrazine hydrate in the presence of catalytic amounts of Methyl imidazolium hydrogen sulfate ([Hmim][HSO4]) as an efficient catalyst. These synth...

full text

Silica-bonded n-propyldiethylenetriamine sulfamic acid as a recyclable solid acid catalyst for the synthesis of coumarin and biscoumarin derivatives

Silica-bonded n-propyldiethylenetriamine sulfamic acid (SBPDSA) was found as an efficient solid acid for the synthesis of coumarins. Coumarin derivatives were obtained via the Pechmann condensation reaction of phenols and β-keto-esters at 80 oC under solvent-free conditions. Also, biscoumarins were obtained via the condensation of aldehydes and 4-hydroxycoumarin in water at reflux conditions. T...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 36  issue 6

pages  77- 84

publication date 2017-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023