Development of ultrasound-assisted emulsification microextraction for the determination of trace zinc and copper by flame atomic absorption spectrometry

Authors

  • Hadi Noorizadeh Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
  • Mahmoud Roushani Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
  • Shahryar Abbasi Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
Abstract:

In this work, we developed a method based on ultrasound-assisted emulsification microextraction (USAEME) for the determination of zinc and copper by flame atomic absorption spectrometry (FAAS). The method is based on the use of the organic solvent carbon tetrachloride (CCl4) as an extraction solvent. In order to obtain a high enrichment factor, the effect of different parameters affecting the complex formation and extraction conditions (such as the type and volume of the extraction solvent, pH, the chelating agent amount, extraction time, extraction temperature and ionic strength) were tested. Under optimum conditions, the eight replicates mixture of the 100 ngmL-1 and 50 ngmL-1 for Zn(II) and Cu(II) ions, gave a mean absorbance of 0.055 and 0.061, with a relative standard deviation (RSD) of ±%3.2 and 2.9, respectively. The equations for the lines were A = 0.4921C + 0.0027 (R = 0.9998) and A = 1.0701C + 0.0032 (R = 0.9997), respectively. The limit of detection for Zn (II) and Cu(II) ions were 1.06 and 1.4 ngL−1, respectively. The calibration graph was linear in the range of 3.0–2000.0 ngmL−1 and 2.0-850.0 ngmL−1 for Zn and Cu respectively. In the proposed procedure, enhancement factors were 9.51 and 6.25 for Zn and Cu, respectively. This proposed method was successfully applied in the analysis of four real environmental water samples and good spiked recoveries over the range of 98.4–103.0% were obtained. This is a first research used USAEME for simultaneous determination Zn and Cu in water.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Flame atomic absorption spectrometry determination of trace amounts of nickel ions in water samples after ligandless ultrasound-assisted emulsification microextraction.

In the present work, a new ligandless-ultrasound-assisted emulsification microextraction (LL-USAEME) method was developed for preconcentration trace amounts of nickel as a prior step to its determination by flame atomic absorption spectrometry. Some factors influencing the extraction efficiency of nickel and its subsequent determination were studied and optimized, such as type and volume of the...

full text

Ion Pair Dispersive Liquid-Liquid Microextraction for the Determination of Trace Amounts of Copper(II) in Soil, Multivitamin Tablet, Tea and Water Samples Using Flame Atomic Absorption Spectrometry

Ion pair dispersive liquid- liquid microextraction (IP-DLLME) method combined with flame atomic absorption spectrometry was proposed for the determination of trace amounts of copper(II). By using pyrocatechol violet as chelating agent and cetyltrimethyl ammonium bromide as an ion pairing agent, the trace amount of copper(II) was extracted in chloroform. The factors influencing the formation cop...

full text

Ultrasound-Assisted Emulsification Solidified Floating Organic Drop Microextraction for the Determination of Trace Cadmium in Water Samples by Flame Atomic Absorption Spectrometry

Uma técnica de microextração em fase líquida foi desenvolvida para a extração e determinação de quantidades traço de íons cádmio em amostras de água. A emulsificação-microextração assistida por ultrasom através da gota orgânica flutuante solidificada (USAE-SFODME) foi empregada para a extração e a espectrometria de absorção atômica com chama (FAAS) foi empregada para a determinação de Cd. Foram...

full text

Determination of Trace Copper(II) in Food Samples by Flame Atomic Absorption Spectrometry after Cloud Point Extraction

A new method for the determination of trace copper(II) in food samples by Cloud Point Extraction(CPE) combined with Flame Atomic Absorption Spectrometry(FAAS) is presented and evaluated. The method is based on the fact that hydrophobic complex of copper(II) with sodium diethyldithiocarbamate (DDTC) was formed at pH 6.0 and subsequently the hydrophobic complex was extracted into surfactant-r...

full text

Preconcentration and determination of palladium water samples by ionic liquid - dispersive liquid liquid microextraction combined with flame atomic absorption spectrometry

A simple, rapid and efficient dispersive liquid–liquid microextraction by use of ionic liquid (IL-DLLME)method, followed by flame atomic absorption spectrometry (FAAS) was developed for the preconcentrationand determination of palladium in water samples. In this method, an appropriate mixture of acetone and octylmethyl imidazolium hexafluorophosphate was injected rapidly into the aqueous sample...

full text

Flotation/magnetic stirring-assisted liquid-liquid microextraction combined with flame atomic absorption spectrometry for the preconcentration and determination of cadmium (II) after optimization using experimental design

Arapid, highly sensitive and efficient flotation/magnetic stirring-assisted liquid-liquid microextraction combined with flame atomic absorption spectrometry has been proposed for the preconcentration and quantitative analysis of trace amounts of cadmium (II) in the presence of sodium diethyldithiocarbamateas complexingagent. Parameters including sample pH, concentration of the complexingagent, ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue Issue 4. pp. 352-471

pages  445- 454

publication date 2019-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023