Developing a Recommendation Framework for Tourist by Mining Geo-tag Photos (Case Study Tehran District 6)
Authors
Abstract:
With the increasing popularity of sharing media on social networks and facilitating access to location technologies, such as Global Positioning System (GPS), people are more interested to share their own photos and videos. The world wide web users are no longer the sole consumer but they are producers of information also, hence a wealth of information are available on web 2.0 applications. The shared media usually contain geo-tagged locations, time stamp, hashtags, and comments. As such, mining social networks can yield extensive knowledge about human dynamics and mobility behaviors within urban context So web users are no longer just users but also producers of information This wealth of information can be leveraged for location-based services. If the locations visited by users are collected and sorted according to the timestamps, the sequence that the user has visited can be determined; exploring of which can be used in tourism planning. Recently, there is an increasing tendency to adopt the information from these geo-tagged photos for learning to recommend tourist locations. For a tourist, before traveling to an unfamiliar city, the most important preparation is planning the trip. without any prior knowledge, tourist must either rely on travel books, personal travel blogs or combination of online resources and services. It is difficult and time consuming and painstaking to find out the locations worth to visit and figure out the order in which they are to be visited. Hence, the purpose of the present study is to provide a framework for recommending locations and travel sequences to tourists by using geo-tagged photos in social networks. Most existing methods for tourist recommendation do not consider context constraints, or at best, address a few dimensions of contexts. The present work aims to develop a context-aware recommender system that recommends interesting locations and the travel sequence. The proposed method is designed such that it can use the collective wisdom of people from collection of geo-tagged photos in order to provide a set of tourism locations and interesting trip sequences that matches the user's current context given a city that is unfamiliar to that user. first Due to the low accuracy of positioning with GPS embedded in mobile phones to find a unique pair of geographic coordinates for a tourist place the geo-tagged photos were clustered. For this reason OPTICS clustering method exploit to group geo-tagged photos by their locations. It then uses the combined method, to annotate all of the clusters that are created in the previous step with semantics. Then, we create a profile for clusters by using historical context (time stamps and weather). After that, we generated a travel sequences database and rated the sequences in the database according to their context. Finally In order to evaluate the performance of the proposed method, Panoromia site dataset of one region in Tehran was used and Experimental results showed that 64.5% of the results obtained by our proposed strategy are identical with the user preferences, which illustrate rationality of the recommendation from analyzing the geo-tagged photos.
similar resources
Detecting Friday Night Party Photos: Semantics for Tag Recommendation
Multimedia annotation is central to its organization and retrieval – a task which tag recommendation systems attempt to simplify. We propose a photo tag recommendation system which automatically extracts semantics from visual and meta-data features to complement existing tags. Compared to standard content/tag-based models, these automatic tags provide a richer description of the image and espec...
full textDeveloping a Conceptual Framework for Evaluation of Elimination of Visual Pollution Plans, Case of Study: Enghelab Street, Tehran
Visual pollution is one of the problems of urban appearance that great negative influence on the quality of life of citizens. Some elements such as billboards and advertisements on building facades, canals and shafts for air conditioning, electricity and telephone cables, and gas pipes, façade deterioration, heterogeneity of new constructions, disruption of the historical skyline, extensions to...
full textQuantifying Tourist Behavior Patterns by Travel Motifs and Geo-Tagged Photos from Flickr
With millions of people traveling to unfamiliar cities to spend holidays, travel recommendation becomes necessary to assist tourists in planning their trips more efficiently. Serving as a prerequisite to travel recommender systems, understanding tourist behavior patterns is therefore of great importance. Recently, geo-tagged photos on social media platforms like Flickr have provided a rich data...
full textTrip Pattern Mining Using Large Scale Geo-tagged Photos
Photo-sharing websites allows people to display their experiences on the Web through rich media data such as photos and videos. These photos contain spatial context in terms of latitude and longitude where the photo was taken. The geotagged photos disclose much information about people travel behavior and tourist density. As web-based and mobile-based technologies advance, geo-tagged photos are...
full textExploration of geo-tagged photos through data mining approaches
With the development of web technique and social network sites human now can produce information, share with others online easily. Photo-sharing website, Flickr, stores huge number of photos where people upload and share their pictures. This research proposes a framework that is used to extract associative points-of-interest patterns from geo-tagged photos in Queensland, Australia, a popular to...
full textMining Semantic Sequential Patterns from Geo-tagged Photos
Social media data associated with geographic location and time information reflect people footprint in real world. Abundance of geo-referenced content represents a massive opportunity to understanding of human geographic mobility behaviors. Most trajectory mining research from geo-enabled social media data focus on spatial geometric features. Integrating trajectory analysis with semantic inform...
full textMy Resources
Journal title
volume 9 issue 1
pages 31- 42
publication date 2019-09
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023