Developing a 3D stochastic discrete fracture network model for hydraulic analyses

Authors

  • ALI HEYDARI mining engineering, faculty of mining petroleum and geophysics, university of Shahrood, IRAN
  • Mehdi Noroozi Faculty of Mining Engineering, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
  • Seyed Esmaeil Jalali Faculty of Mining Engineering, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
Abstract:

Fluid flow in jointed rock mass with impermeable matrix is often controlled by joint properties, including aperture, orientation, spacing, persistence and etc. On the other hand, since the rock mass is made of heterogeneous and anisotropic natural materials, geometric properties of joints may have dispersed values. One of the most powerful methods for simulation of stochastic nature of geometric characteristics of joins is three dimensional stochastic discrete fracture network (DFN) modelling. The current research is conducted to develop an applicable discrete fracture network model for hydraulic analyses. Also, DFN-FRAC3D software – which was proposed earlier for mechanical analysis - is developed to construct a hydraulic DFN. For this purpose, joint aperture parameter is added to other geometric features of model including orientation, spacing, persistence and intensity. In order to develop an accurate hydraulic DFN model, correlation between the joint aperture and length is also considered, that has not been observed in most previous studies. In this study, the software is developed for detection of connected joint networks. In order to test the performance of the provided simulator, a 3D hydraulic model for fracture network of rock mass in Mazino region is presented.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Uncertainty quantification in Discrete Fracture Network models: Stochastic fracture transmissivity

We consider flows in fractured media, described by Discrete Fracture Network (DFN) models. We perform an Uncertainty Quantification analysis, assuming the fractures’ transmissivity coefficients to be random variables. Two probability distributions (log-uniform and log-normal) are used within different laws that express the coefficients in terms of a family of independent stochastic variables; t...

full text

3D stochastic rock fracture modeling related to strike-slip faults

Fault zones and fault-related fracture systems control the mechanical behaviors and fluid-flow properties of the Earth’s crust. Furthermore, nowadays, modeling is being increasingly used in order to understand the behavior of rock masses, and to determine their characteristics. In this work, fault zones and fracture patterns are reviewed, and also comprehensive studies are carried out on the fr...

full text

Developing a new stochastic competitive model regarding inventory and price

Within the competition in today’s business environment, the design of supply chains becomes more complex than before. This paper deals with the retailer’s location problem when customers choose their vendors, and inventory costs have been considered for retailers. In a competitive location problem, price and location of facilities affect demands of customers; consequently, simultaneous optimiza...

full text

[Article] Uncertainty quantification in Discrete Fracture Network models: stochastic fracture transmissivity

We consider flows in fractured media, described by Discrete Fracture Network (DFN) models. We perform an Uncertainty Quantification analysis, assuming the fractures’ transmissivity coefficients to be random variables. Two probability distributions (log-uniform and log-normal) are used within different laws that express the coefficients in terms of a family of independent stochastic variables; t...

full text

New Concept Discrete Fracture Network Model Simulator, GeoFlow, and Three Dimensional Channeling Flow in Fracture Network

Discrete fracture network (DFN) model simulations, where a fracture network can have a natural heterogeneity, is one of the most effective approaches in fluid flow analyses for naturally fractured and enhanced geothermal reservoirs. In the DFN model simulations, fractures are modeled by a pair of parallel smooth plates although real fractures have rough surfaces. Numerous field and laboratory o...

full text

A Novel Combinatorial Approach to Discrete Fracture Network Modeling in Heterogeneous Media

Fractured reservoirs contain about 85 and 90 percent of oil and gas resources respectively in Iran. A comprehensive study and investigation of fractures as the main factor affecting fluid flow or perhaps barrier seems necessary for reservoir development studies. High degrees of heterogeneity and sparseness of data have incapacitated conventional deterministic methods in fracture network modelin...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 52  issue 2

pages  167- 175

publication date 2018-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023