Determining the importance of soil properties for clay dispersibility using artificial neural network and daptive neuro-fuzzy inference system

Authors

  • M. Ranjbar Khorasani Former MSc Student of Soil Science Department, College of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
Abstract:

The main purpose of the current research is comparing the results of Artificial Neural Network (ANN) with Adaptive Neuro-Fuzzy Inference System (ANFIS) with regard to determination of the importance of soil properties affecting clay dispersibility. After taking samples from two depths of 0-40 and 40-80 cm, the spontaneous and mechanical dispersions of clay were recorded using both weighing and turbidimetric methods. To determine the degree of importance of soil properties affecting clay dispersibility, first ANNs and ANFIS in MATLAB Software were determined, using all research variables. After determining less effective properties and omitting them, the mentioned networks with the remaining variables including percentage of clay and sand, soil reaction, Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR) were measured and the degree of importance of each variable in clay dispersibility was determined. Finally, the results of ANNs and ANFIS were compared by calculation of validation parameters. Existence of high correlation between calculated values for weighing and turbidimetric methods showed a linear relationship between the two methods. In general, in both depths and for both weighing and turbidimetric methods, the sensitivity of clay dispersibility to the percentage of the clay, sand and SAR, was higher than any other variable. Although the results obtained from the validation statistics indicate high accuracy of both ANN and ANFIS models, the last model showed relatively better results as compared to ANN model.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Determining the importance of soil properties for clay dispersibility using artificial neural network and adaptive neuro-fuzzy inference system

The main purpose of the current research is comparing the results of Artificial Neural Network (ANN) with Adaptive Neuro-Fuzzy Inference System (ANFIS) with regard to determination of the importance of soil properties affecting clay dispersibility. After taking samples from two depths of 0-40 and 40-80 cm, the spontaneous and mechanical dispersions of clay were recorded using both weighing and ...

full text

A COMPREHENSIVE STUDY ON THE CONCRETE COMPRESSIVE STRENGTH ESTIMATION USING ARTIFICIAL NEURAL NETWORK AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

This research deals with the development and comparison of two data-driven models, i.e., Artificial Neural Network (ANN) and Adaptive Neuro-based Fuzzy Inference System (ANFIS) models for estimation of 28-day compressive strength of concrete for 160 different mix designs. These various mix designs are constructed based on seven different parameters, i.e., 3/4 mm sand, 3/8 mm sand, cement conten...

full text

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Prediction of Thermal performance nanofluid Al2O3 by Artificial Neural Network and Adaptive Neuro-Fuzzy Inference Systemt

In recent years, the use of modeling methods that directly utilize empirical data is increasing due to the high accuracy in predicting the results of the process, rather than statistical methods. In this paper, the ability of Artificial Neural Network (ANN) and Adaptive Fuzzy-Neural Inference System (ANFIS) models in the prediction of the thermal performance of Al2O3 nanofluid that is measured ...

full text

The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation

Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...

full text

The use of wavelet-artificial neural network and adaptive neuro-fuzzy inference system models to predict monthly precipitation

In water supply systems, One of the most important components as safety unit and the current controller (Switching flow and regulate the amount of flow) used in the arrangement of lines of water. In this study, according to multiple ponds in Tanguiyeh dam water pipeline to industrial and mining company Gol Gohar Sirjan Butterfly valve used in these ponds using Fluent software simulation has bee...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 22  issue 1

pages  135- 143

publication date 2017-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023