Determination of Two Antiepileptic Drugs in Urine by Homogenous Liquid-Liquid Extraction Performed in A Narrow Tube Combined With Dispersive Liquid-liquid Microextraction Followed by Gas Chromatography-flame Ionization Detection
Authors
Abstract:
A simple and efficient homogenous liquid-liquid extraction method performed in a narrow tube combined with dispersive liquid-liquid microextraction method has been presented for the simultaneous determination of two antiepileptic drugs in urine followed by gas chromatography with flame ionization detection. In this method, a mixture of acetonitrile and urine sample (homogenous solution) is loaded into a column partially filled with solid sodium chloride. By passing the homogenous solution through the salt layer, acetonitrile is separated from the aqueous solution as the fine droplets and collected on top of the column as a separated phase. The obtained organic phase is removed and mixed with an extraction solvent, and then the resulting mixture is rapidly injected into an alkaline solution. Various experimental parameters affecting performance of the proposed method such as type and volume of extraction solvent, pH, and flow rate in homogenous liquid-liquid extraction step, and type and volume of extraction solvent and ionic strength in dispersive liquid-liquid microextraction step were investigated. The relative standard deviation of the proposed method was <8% (n = 6, C = 1 µg L-1 of each analyte). The limits of detection for phenobarbital and carbamazepine were 0.017 and 0.010 µg L-1 and the limits of quantification were 0.056 and 0.033 µg mL-1, respectively.
similar resources
Determination of valproic acid in human plasma using dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection
Objective(s): Dispersive liquid-liquid microextraction coupled with gas chromatography (GC)-flame ionization detector was developed for the determination of valproic acid (VPA) in human plasma. Materials and Methods: Using a syringe, a mixture of suitable extraction solvent (40 µl chloroform) and disperser (1 ml acetone) was quickly added to 10 ml of diluted plasma sample containing VPA (pH, 1....
full textDetermination of 2-phenylethanol in Rose Water Using Dispersive Liquid-Liquid Microextraction with Gas Chromatography Flame Ionization Detection
A simple and rapid microextraction procedure based on dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-flame ionization detection (GC-FID) was developed for the extraction and analysis of 2-phenylethanol in rose water sample. In the proposed approach, carbon tetrachloride and ethanol were used as extraction and dispersive solvents, respectively. Some important pa...
full textDetermination of valproic acid in human plasma using dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection
OBJECTIVES Dispersive liquid-liquid microextraction coupled with gas chromatography (GC)-flame ionization detector was developed for the determination of valproic acid (VPA) in human plasma. MATERIALS AND METHODS Using a syringe, a mixture of suitable extraction solvent (40 µl chloroform) and disperser (1 ml acetone) was quickly added to 10 ml of diluted plasma sample containing VPA (pH, 1.0;...
full textDetermination of some B Vitamins in Sour Cherry Juice Using Dispersive Liquid-liquid Microextraction Followed by High-performance Liquid Chromatography
Dispersive liquid-liquid microextraction method (DLLME) combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) was used to determine thiamine (B1), nicotinamide (B3) and pyridoxine (B6) in sour cherry juice. This method was rapid, simple and sensitive. Separation was accomplished using a C18 column. The optimum chromatographic conditions were found to be: mobile ph...
full textDetermination of some B Vitamins in Sour Cherry Juice Using Dispersive Liquid-liquid Microextraction Followed by High-performance Liquid Chromatography
Dispersive liquid-liquid microextraction method (DLLME) combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) was used to determine thiamine (B1), nicotinamide (B3) and pyridoxine (B6) in sour cherry juice. This method was rapid, simple and sensitive. Separation was accomplished using a C18 column. The optimum chromatographic conditions were found to be: mobile ph...
full textMy Resources
Journal title
volume 18 issue 2
pages 620- 630
publication date 2019-05-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023