Determination of the number of components in finite mixture distribution with Skew-t-Normal components

Authors

  • ,
Abstract:

Abstract One of the main goal in the mixture distributions is to determine the number of components. There are different methods for determination the number of components, for example, Greedy-EM algorithm which is based on adding a new component to the model until satisfied the best number of components. The second method is based on maximum entropy and finally the third method is based on nonparametric. In this manuscript it is considered the mixture distributions with Skew-t-Normal components.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Generalizations of the Skew t-Normal Distribution and their Properties

In this paper we consider several generalizations of the skew t-normal distribution, and some of their properties. Also, we represent several theorems for constructing each generalized skew t-normal distribution. Next, we illustrate the application of the proposed distribution studying the ratio of two heavy metals, Nickel and Vanadium, associated with crude oil in Shadgan wetland in the south-...

full text

On the Posterior Distribution of the Number of Components in a Finite Mixture by Agostino Nobile

The posterior distribution of the number of components k in a finite mixture satisfies a set of inequality constraints. The result holds irrespective of the parametric form of the mixture components and under assumptions on the prior distribution weaker than those routinely made in the literature on Bayesian analysis of finite mixtures. The inequality constraints can be used to perform an “inte...

full text

On the Posterior Distribution of the Number of Components in a Finite Mixture

The posterior distribution of the number of components k in a finite mixture satisfies a set of inequality constraints. The result holds irrespective of the parametric form of the mixture components and under assumptions on the prior distribution weaker than those routinely made in the literature on Bayesian analysis of finite mixtures. The inequality constraints can be used to perform an “inte...

full text

An Extension of the Birnbaum-Saunders Distribution Based on Skew-Normal t Distribution

In this paper, we introducte a family of univariate Birnbaum-Saunders distributions arising from the skew-normal-t  distribution. We obtain several properties of this distribution such as its moments, the maximum likelihood estimation procedure via an EM-algorithm and a method to evaluate standard errors using the EM-algorithm. Finally, we apply these methods to a real data set to demonstr...

full text

Finite Mixture Models with Negative Components

Mixture models, especially mixtures of Gaussian, have been widely used due to their great flexibility and power. Non-Gaussian clusters can be approximated by several Gaussian components, however, it can not always acquire appropriate results. By cancelling the nonnegative constraint to mixture coefficients and introducing a new concept of “negative components”, we extend the traditional mixture...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 22  issue 2

pages  13- 19

publication date 2018-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023