DESIGN OPTIMIZATION OF RC FRAMES UNDER EARTHQUAKE LOADS

Authors

  • M. J. Fadaee
  • S. Gharehbaghi
Abstract:

This paper deals with the optimization of reinforced concrete (RC) structures under earthquake loads by introducing a simple methodology. One of the most important problems in the design of RC structures is the existing of various design scenarios that all of them satisfy design constraints. Despite of the steel structures, a large number of design candidates due to a large number of design variables can be utilized. Doubtless, the economical and practical aspects are two effective parameters on accepting a design candidate. As such, in this paper the conventional design process that uses a trial and error process is replaced with an automated process using optimization technique. Also, the cost of construction is selected as an objective function in the automated process. A real valued model of particle swarm optimization (PSO) algorithm is utilized to perform the optimization process. Design constraints conform to the ACI318-08 code and standard 2800-code recommendations. Three ground motion records modified based on Iranian Design Spectrum is considered as earthquake excitations. Moreover, to reveal the effectiveness and robustness of the presented methodology, for example, a three-bay eighteen-story RC frame is optimized against the combination of gravity and earthquake loads. The entire process is summarized in a computer programming using a link between MATLAB platform and OpenSEES as open source object-oriented software.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Evaluation of the Seismic Response of Single-Story RC Frames under Biaxial Earthquake Excitations

This paper summarizes the lessons learned from a full-scale test on two RC frame prototypes that have recently been tested on LNEC shaking-table using four pairs of biaxial synthetic ground motion records during 15WCEE Conference (2012). The reference structures are two single-story RC frames which are geometrically identical but with different reinforcement details. The simplified inelastic mo...

full text

Earthquake Response Evaluation of RC Frames using High Strength Steel

To achieve better structural performance, lesser damage along with minimum residual displacements is a main objective of earthquake resistant design. In ordinary steel reinforced concrete frames, chances of severe damage because of the lower strength of conventional steel are always present during strong earthquakes. With the invention of high-strength steel (HSS) it can be anticipated that its...

full text

TOPOLOGY OPTIMIZATION OF 2D BUILDING FRAMES UNDER ARTIFICIAL EARTHQUAKE GROUND MOTIONS USING POLYGONAL FINITE ELEMENT METHOD

In this article, topology optimization of two-dimensional (2D) building frames subjected to seismic loading is performed using the polygonal finite element method. Artificial ground motion accelerograms compatible with the design response spectrum of ASCE 7-16 are generated for the response history dynamic analysis needed in the optimization. The mean compliance of structure is minimized as a t...

full text

TOPOLOGY OPTIMIZATION OF STRUCTURES UNDER TRANSIENT LOADS

In this article, an efficient methodology is presented to optimize the topology of structural systems under transient loads. Equivalent static loads concept is used to deal with transient loads and to solve an alternate quasi-static optimization problem. The maximum strain energy of the structure under the transient load during the loading interval is used as objective function. The objective f...

full text

progressive collapse evaluation of rc symmetric and asymmetric mid-rise and tall buildings under earthquake loads

plan irregularity causes local damages being concentrated in the irregular buildings. progressive collapse is also the collapse of a large portion or whole building due to the local damages in the structure. the effect of irregularity on the progressive collapse potential of the buildings is investigated in this study. this is carried out by progressive collapse evaluation of the asymmetric mid...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 4

pages  459- 477

publication date 2012-10

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023