Design of robust controller by neuro-fuzzy system in a prescribed region via state feedback

Authors

  • M. Yarahmadi
  • S. M. Karbassi
Abstract:

In this paper, first a new algorithm for pole assignment of closed-loop multi-variable controllable systems in a prescribed region of the z-plane is presented. Then, robust state feedback controllers are designed by implementing a neural fuzzy system for the placement of closed-loop poles of a controllable system in a prescribed region in the left-hand side of z-plane. A new method based on the parameterizations of condition number function of a closed-loop system whose poles are varied in a prescribed region by neural fuzzy system is also designed.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

design of an analog fuzzy logic controller chip

fuzzy logic has been developed over the past three decades into a widely applied techinque in classification and control engineering. today fuzzy logic control is one of the most important applications of fuzzy set theory and specially fuzzy logic. there are two general approachs for using of fuzzy control, software and hardware. integrated circuits as a solution for hardware realization are us...

15 صفحه اول

Modeling and Neuro-fuzzy Controller Design of a Wind Turbine in Full-load Region Based on Operational Data

In this paper, dynamic modeling of a Vestas 660 kW wind turbine and its validation are performed based on operational data extracted from Eoun-Ebn-Ali wind farm in Tabriz, Iran. The operational data show that the turbine under study, with a classical PI controller, encounters high fluctuations when controlling the output power at its rated value. The turbine modeling is performed by deriving th...

full text

Design of a Neuro Fuzzy Controller

Classical control theory is based on the mathematical models that describe the physical plant under consideration. The essence of fuzzy control is to build a model of human expert who is capable of controlling the plant without thinking in terms of mathematical model. The transformation of expert's knowledge in terms of control rules to fuzzy frame work has not been formalized and arbitrary cho...

full text

Design of Power System Stabilizer with Neuro-Fuzzy UPFC Controller

The growth in the demand of electrical energy is leading to load on the Power system which increases the occurrence of frequent oscillations in the system. The reason for the oscillations is due to the lack of damping torque which is required to dominate the disturbances of Power system. By using FACT devices, such as Unified Power Flow Controller (UPFC) can control power flow, reduce sub-synch...

full text

Design and Simulation of Adaptive Neuro Fuzzy Inference Based Controller for Chaotic Lorenz System

Chaos is a nonlinear behavior that shows chaotic and irregular responses to internal and external stimuli in dynamic systems. This behavior usually appears in systems that are highly sensitive to initial condition. In these systems, stabilization is a highly considerable tool for eliminating aberrant behaviors. In this paper, the problem of stabilization and tracking the chaos are investigated....

full text

A Genetic based Neuro-Fuzzy Controller System

Recently, the mobile robots have great importance in the manufacturing processes. They are widely used for assembling processes, handling the dangerous components, moving the weighted things, etc. Designing the controller of the mobile robot is a very complex task. Many simple control systems used the neuro-fuzzy controller in the mobile robots. But, they faced with great complexity when moving...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue None

pages  1- 16

publication date 2009-05

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023