Design of a Novel Recombinant Multi-Epitope Vaccine against Triple-Negative Breast Cancer
Authors
Abstract:
Background: Triple-negative breast cancer (TNBC) is determined by the absence of ERBB2, estrogen and progesterone receptors’ expression. Cancer vaccines, as the novel immunotherapy strategies, have emerged as promising tools for treating the advanced stage of TNBC. The aim of this study was to evaluate Carcinoembryonic antigen (CEA), Metadherin (MTDH), and Mucin 1 (MUC-1) proteins as vaccine candidates against TNBC. Methods: In this research, a novel vaccine was designed against TNBC by using different immunoinformatics and bioinformatics approaches. Effective immunodominant epitopes were chosen from three antigenic proteins, namely CEA, MTDH, and MUC-1. Recombinant TLR4 agonists were utilized as an adjuvant to stimulate immune responses. Following the selection of antigens and adjuvants, appropriate linkers were chosen to generate the final recombinant protein. To achieve an excellent 3D model, the best predicted 3D model was required to be refined and validated. To demonstrate whether the vaccine/TLR4 complex is stable or not, we performed docking analysis and dynamic molecular simulation. Result: Immunoinformatics and bioinformatics evaluations of the designed construct demonstrated that this vaccine candidate could effectively be used as a therapeutic armament against TNBC. Conclusion: Bioinformatics studies revealed that the designed vaccine has an acceptable quality. Investigating the effectiveness of this vaccine can be confirmed by supplementary in vitro and in vivo studies.
similar resources
Immunoinformatics Design of a Multi-epitope-based Vaccine Against Colorectal Cancer
Background: Bioinformatic approaches for designing vaccines have become a promising alternative to conventional methods. We herein designed a multi-epitope-based vaccine against colorectal cancer (CRC). Methods: Used peptides in the CRC vaccines were retrieved from databases of PubMed, Web of Science, Google Scholar, and Clinical trials. The adjuvants of Mycobacterial heparin-binding hemagglut...
full textDesign of a Multi-epitope Peptide Vaccine against SARS-CoV-2 based on Immunoinformatics Data
Background and purpose: In 2019, the world has witnessed the emergence of a virus that caused acute respiratory distress syndrome in human with high mortality rates (approximately 3.7%). So far, no effective treatment has been proven against COVID-19. This study aimed at designing a multi-epitope vaccine combining several T-cell and B-cell epitopes of the SARS-CoV-2. Materials and methods: Bas...
full textA Novel Multi-Epitope Vaccine For Cross Protection Against Hepatitis C Virus (HCV): An Immunoinformatics Approach
Background: Hepatitis C virus (HCV) causes acute and chronic human hepatitis infections. Due to the high genetic diversity and high rates of mutations in the genetic material so far there is no approved vaccine against HCV. Materials and Methods: The aim of this study was to determination B and T cell conserved epitopes of E1 and E2 proteins from HCV and construction of a chimeric pepti...
full textDevelopment of a Vaccine Targeting Triple-Negative Breast Cancer
s: Vaccination with peptides in IGF-IR that induce robust Th1 immunity with limited immunosuppression significantly inhibit tumor growth in a model of triple-negative breast cancer. Department of Defense Breast Cancer Research Program Era of Hope Meeting, 2011. Vaccination targeting IGF-IR sensitizes tumors to tamoxifen therapy in an anti-estrogen resistant mouse model. American Association of ...
full textClinicopathological Features of Non-metastatic Triple Negative Breast Cancer
Background: Triple negative breast cancer (TNBC) is reported to be associated with a high risk of recurrence, poor overall survival (OS), and disease-free survival (DFS) rates. This study evaluated the clincopathological features and survival of non-metastatic TNBC women in the capital of Iran compared with other areas of the world. Methods: In a retrospective study, 119 women with TNBC based ...
full textFuture of Triple Negative Breast Cancer: Can Immunotherapy Treat This Deadly Subtype of Breast Cancer?
Triple negative breast cancer (TNBC): challenges and solutions via the immune cells TNBC is one of the most complicated types of breast cancer to treat. It is generally diagnosed based on the absence of three receptors: estrogen, progesterone, and human epidermal growth factor receptor 2 (HER2) and is thus defined as a triple negative. TNBC is often more aggressive with lower survival rates...
full textMy Resources
Journal title
volume 26 issue 2
pages 160- 174
publication date 2022-03
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023