Design of a Multi-epitope Peptide Vaccine against SARS-CoV-2 based on Immunoinformatics Data

Authors

  • Abediankenari, Saeid Professor, Immunonogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
  • Akbari, Esmaeil Associate Professor, Immunonogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
  • Azizan, Amin BSc Student in Medical Laboratory, Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
  • Ehteshaminia, Yahya BSc Student in Medical Laboratory, Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
  • Enderami, Ehsan Assistant Professor, Immunonogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
  • Habibi, Alireza BSc Student in Medical Laboratory, Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
  • Hassannia, Hadi Assistant Professor, Immunonogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
  • Jadidi-Niaragh, Farhad Assistant Professor, Immunology Research Center, Tabriz University of Medical Sciences, Sari, Iran
Abstract:

Background and purpose: In 2019, the world has witnessed the emergence of a virus that caused acute respiratory distress syndrome in human with high mortality rates (approximately 3.7%). So far, no effective treatment has been proven against COVID-19. This study aimed at designing a multi-epitope vaccine combining several T-cell and B-cell epitopes of the SARS-CoV-2. Materials and methods: Based on immunoinformatics strategies, B-cell and T-cell epitopes were predicted using immune Epitope Database and Analysis Resource (IEDB). Then, the appropriate predicted epitopes were joined to each other by suitable linkers, and the multi-epitope vaccine constructed was suggested as a vaccine candidate against SARS-CoV-2. Results: In this study, 28 B-cell epitopes and 33 T-cell epitopes were predicted. Then, to design the multi epitope vaccine, 5 epitopes were used from the virion surface of spike protein and one epitope was used from intravirion region of the Envelope, Membrane, and Nucleocapsid proteins that later on were joined with flexible glycine linker. Conclusion: Based on the immunoinformatics results obtained, it seems that different epitopes from SARS-CoV-2 structural proteins have high ability to stimulate humoral and cellular immune responses, so the multi-epitope vaccine designed with these epitopes, can help to accelerate the production of effective vaccines against COVID-19.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

In silico design a multivalent epitope vaccine against SARS-CoV-2 for Iranian populations

Background: Due to high genetic variation in human leukocyte antigen )HLA( alleles, epitope-based vaccines don’t show equal efficacy in different human populations. therefore, we proposed a multi-epitope vaccine against SARS-CoV-2 for Iranian populations. Materials and Methods: For this purpose, the proteins without allergenicity and high antigenicity as well as conservancy level from SARS-CoV...

full text

Immunoinformatics Design of a Multi-epitope-based Vaccine Against Colorectal Cancer

Background: Bioinformatic approaches for designing vaccines have become a promising alternative to conventional methods. We herein designed a multi-epitope-based vaccine against colorectal cancer (CRC). Methods: Used peptides in the CRC vaccines were retrieved from databases of PubMed, Web of Science, Google Scholar, and Clinical trials. The adjuvants of Mycobacterial heparin-binding hemagglut...

full text

A Novel Multi-Epitope Vaccine For Cross Protection Against Hepatitis C Virus (HCV): An Immunoinformatics Approach

Background: Hepatitis C virus (HCV) causes acute and chronic human hepatitis infections. Due to the high genetic diversity and high rates of mutations in the genetic material so far there is no approved vaccine against HCV. Materials and Methods: The aim of this study was to determination B and T cell conserved epitopes of E1 and E2 proteins from HCV and construction of a chimeric pepti...

full text

T-cell epitope vaccine design by immunoinformatics

Vaccination is generally considered to be the most effective method of preventing infectious diseases. All vaccinations work by presenting a foreign antigen to the immune system in order to evoke an immune response. The active agent of a vaccine may be intact but inactivated ('attenuated') forms of the causative pathogens (bacteria or viruses), or purified components of the pathogen that have b...

full text

Design of a Novel Recombinant Multi-Epitope Vaccine against Triple-Negative Breast Cancer

Background: Triple-negative breast cancer (TNBC) is determined by the absence of ERBB2, estrogen and progesterone receptors’ expression. Cancer vaccines, as the novel immunotherapy strategies, have emerged as promising tools   for treating the advanced stage of TNBC. The aim of this study was to evaluate Carcinoembryonic antigen (CEA), Metadherin (MTDH), and Mucin 1 (MUC-1) proteins as vaccine ...

full text

Identification of synthetic vaccine candidates against SARS CoV infection.

Three peptides, D1 (amino acid residues 175-201), D2 (a.a. 434-467), and TM (a.a. 1128-1159), corresponding to the spike protein (S) of severe acute respiratory syndrome corona virus (SARS CoV) were synthesized and their immunological functions were investigated in three different animals models (mice, guinea pigs, and rabbits). The peptides mixture formulated either with Freund's adjuvant or s...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 30  issue 190

pages  126- 132

publication date 2020-11

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023