Design and Simulation of a Moving-magnet-type Linear Synchronous Motor for Electromagnetic Launch System

author

Abstract:

The Electromagnetic Aircraft Launch System (EMALS) offers significant benefits to the aircraft, ship, personnel, and operational capabilities. EMALS has such advantages as high thrust, good controllability, reusable, etc., as a launching motor, a double-side plate Permanent Magnet Linear Synchronous Motor (PMLSM) can provide high instantaneous thrust. This paper presents the design and analysis of the moving-magnet-type permanent magnet linear synchronous motor (PMLSM). A detailed analytical modeling based on Maxwell’s equations is presented for analysis and design of PMLSM with Halbach array. In order to improve the thrust characteristics of PMLSM, the structural characteristics and magnetic field are analyzed. The results show an enhancement in the motor performance. Finally, we have used 2-D nonlinear time-stepping transient finite element method to demonstrate validity of the analytical analysis and parametric search is used for multi-objective optimization of PMLSM. Using Finite Element Analysis (FEA), the effects of the parameters on the thrust and thrust ripple waveforms are analyzed.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Thrust Ripple Reduction of Permanent Magnet Linear Synchronous Motor Based on Improved Pole Shape for Electromagnetic Launcher System

In this paper, a new design of permanent magnet linear synchronous motor (PMLSM) for electromagnetic launcher system (EMLs) has been investigated in terms of the requisite amount of average launching thrust force and thrust force ripple minimization through finite element method. EMLs are a kind of technology used to develop thrust force and launch heavy loads with different applications includ...

full text

simulation and design of electronic processing circuit for restaurants e-procurement system

the poor orientation of the restaurants toward the information technology has yet many unsolved issues in regards to the customers. one of these problems which lead the appeal list of later, and have a negative impact on the prestige of the restaurant is the case when the later does not respond on time to the customers’ needs, and which causes their dissatisfaction. this issue is really sensiti...

15 صفحه اول

The finite element analysis of the linear hybrid reluctance motor for the electromagnetic launch system

The Electromagnetic Aircraft Launch System (EMALS) is being developed utilizing electrical and electronic technologies. EMALS is emerging in order to replace the existing steam catapult on naval carriers. Recently, the double-sided linear launcher has drawn increasing attention of researchers. This paper presents the design and analysis of the Linear Hybrid Reluctance Motor (LHRM). This new mot...

full text

Optimum design of a double-sided permanent magnet linear synchronous motor to minimize the detent force

In the permanent magnet linear synchronous motor (PMLSM), force ripple is harmful, useless and disturbing. The force ripple is basically composed of two components: detent force and mutual force ripple. This force is influenced by the geometric parameters of the permanent magnet (PM) motors; such as width, thickness and length of the magnet poles, length and thickness of the rotor and stato...

full text

Optimum design of a double-sided permanent magnet linear synchronous motor to minimize the detent force

In the permanent magnet linear synchronous motor (PMLSM), force ripple is harmful, useless and disturbing. The force ripple is basically composed of two components: detent force and mutual force ripple. This force is influenced by the geometric parameters of the permanent magnet (PM) motors; such as width, thickness and length of the magnet poles, length and thickness of the rotor and stato...

full text

Design and Simulation of a Permanent Magnet Electromagnetic Aircraft Launch System

This paper describes the basic design, refinement and verification using finite element analysis (FEA), and operational simulation using the Virtual Test Bed (VTB), of a linear machine for an electromagnetic aircraft launching system (EMALS) for the aircraft carrier of the future. Choices of basic machine format and procedures for determining basic dimensions are presented. A detailed design fo...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 30  issue 3

pages  351- 356

publication date 2017-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023