Derivations in semiprime rings and Banach algebras
Authors
Abstract:
Let $R$ be a 2-torsion free semiprime ring with extended centroid $C$, $U$ the Utumi quotient ring of $R$ and $m,n>0$ are fixed integers. We show that if $R$ admits derivation $d$ such that $b[[d(x), x]_n,[y,d(y)]_m]=0$ for all $x,yin R$ where $0neq bin R$, then there exists a central idempotent element $e$ of $U$ such that $eU$ is commutative ring and $d$ induce a zero derivation on $(1-e)U$. We also obtain some related result in case $R$ is a non-commutative Banach algebra and d continuous or spectrally bounded.
similar resources
A note on derivations in semiprime rings
We prove in this note the following result. Let n > 1 be an integer and let R be an n!torsion-free semiprime ring with identity element. Suppose that there exists an additive mapping D : R→ R such that D(xn) =∑nj=1 xn− jD(x)x j−1is fulfilled for all x ∈ R. In this case, D is a derivation. This research is motivated by the work of Bridges and Bergen (1984). Throughout, R will represent an associ...
full textGeneralized Derivations in Prime Rings and Noncommutative Banach Algebras
Let R be a prime ring of characteristic different from 2, C the extended centroid of R, and δ a generalized derivations of R. If [[δ(x), x], δ(x)] = 0 for all x ∈ R then either R is commutative or δ(x) = ax for all x ∈ R and some a ∈ C. We also obtain some related result in case R is a Banach algebra and δ is either continuous or spectrally
full textLie Ideals and Generalized Derivations in Semiprime Rings
Let R be a 2-torsion free ring and L a Lie ideal of R. An additive mapping F : R ! R is called a generalized derivation on R if there exists a derivation d : R to R such that F(xy) = F(x)y + xd(y) holds for all x y in R. In the present paper we describe the action of generalized derivations satisfying several conditions on Lie ideals of semiprime rings.
full textMy Resources
Journal title
volume 02 issue 03
pages 129- 135
publication date 2013-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023