Delamination Analysis in Composite Root of a Carbon-Layer Reinforced Wind Turbine Blade

Authors

  • Hamid Ekhteraei Toussi Mechanical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad (FUM).
Abstract:

The inconsistencies accompanied with material properties tipically cause the rise of delamination risk in composites made of different types of glass and crabon fibers. In this study, the delamination of a composite beam reinforced with a carbon layer under bending load is investigated. To this end, a small piece of a wind turbine blade root in the form of a heterogeneous laminated plate is simulated and analyzed. The methodology consists of two parallel approaches, including the experimental measurements and computer simulations. In the experimental program, the delamination of different specimens has been examined by three-point bending (3PB) tests. The diagrams of load versus load line displacement are recorded. In computer simulation, the geometry of composite laminate is re-modeled and stress analysis is performed. The results confirm that delamination loads obtained from the simulations are reliable and in good agreement with those obtained from the experimental procedures. The results of experimental measurements and computational simulations are utilized to predict the delamination failure and to optimize the lay-up sequence of the reinforced structure.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Structural Analysis of a Composite Wind Turbine Blade

The design of an optimised horizontal axis 5-meterlong wind turbine rotor blade in according with IEC 61400-2 standard is a research and development project in order to fulfil the requirements of high efficiency of torque from wind production and to optimise the structural components to the lightest and strongest way possible. For this purpose, a research study is presented here by focusing on ...

full text

Wind Turbine Blade Design

A detailed review of the current state-of-art for wind turbine blade design is presented, including theoretical maximum efficiency, propulsion, practical efficiency, HAWT blade design, and blade loads. The review provides a complete picture of wind turbine blade design and shows the dominance of modern turbines almost exclusive use of horizontal axis rotors. The aerodynamic design principles fo...

full text

Aerodynamic optimization of a 5 Megawatt wind turbine blade

Wind power has been widely considered in recent years as an available and a clean renewable energy source. The cost of wind energy production is currently the main issue, and increasing the size of wind turbines can reduce wind energy production costs. Hence, megawatt wind turbines are being rapidly developed in recent years. In this paper, an aerodynamic analysis of the NREL 5MW turbine is...

full text

Aerodynamic optimization of a 5 Megawatt wind turbine blade

Wind power has been widely considered in recent years as an available and a clean renewable energy source. The cost of wind energy production is currently the main issue, and increasing the size of wind turbines can reduce wind energy production costs. Hence, megawatt wind turbines are being rapidly developed in recent years. In this paper, an aerodynamic analysis of the NREL 5MW turbine is...

full text

Analysis of Wind Turbine Blade Vibration and Drivetrain Loads

ANALYSIS OF WIND TURBINE BLADE VIBRATION AND DRIVETRAIN LOADS By Venkatanarayanan Ramakrishnan The reliability of wind turbines is a major issue for the industry. Drivetrain and blade failures are common, costly and not fully understood. Designers must thus examine and understand the key parameters that influence reliability. As wind turbines increase in size, the blades are designed to be more...

full text

Blade Design and Performance Analysis of Wind Turbine

This paper reviews the design optimization of wind turbine blades through investigating the design methods and analyzing the performance of the blades. The current research work in this area include wind turbine blade geometric design and optimization, aerodynamics analysis, wind turbine blade structural design and dynamics analysis. Blade geometric design addresses the design parameters, inclu...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  9- 18

publication date 2019-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023