Customer Behavior Mining Framework (CBMF) using clustering and classification techniques
Authors
Abstract:
The present study proposes a Customer Behavior Mining Framework on the basis of data mining techniques in a telecom company. This framework takes into account the customers’ behavior patterns and predicts the way they may act in the future. Firstly, clustering technique is used to implement portfolio analysis and previous customers are divided based on socio-demographic features using k-means algorithm. Then, the cluster analysis is conducted based on two criteria, i.e., the number of hours the telecom services used and the number of the services selected by customers of each group. Six groups of customers are identified in three levels of attractiveness according to the results of the customer portfolio analysis. The second phase has been devoted to mining the future behavior of the customers. Predicting the level of attractiveness of newcomer customers and also the churn behavior of these customers are accomplished in the second phase. This framework effectively helps the telecom managers mine the behavior of their customers. This may lead to develop appropriate tactics according to customers’ attractiveness and their churn behavior. Improving managers’ abilities in customer relationship management is one of the obtained results of the study.
similar resources
the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
Mining the Banking Customer Behavior Using Clustering and Association Rules Methods
The unprecedented growth of competition in the banking technology has raised the importance of retaining current customers and acquires new customers so that is important analyzing Customer behavior, which is base on bank databases. Analyzing bank databases for analyzing customer behavior is difficult since bank databases are multi-dimensional, comprised of monthly account records and daily t...
full textCustomer Data Clustering using Data Mining Technique
Classification and patterns extraction from customer data is very important for business support and decision making. Timely identification of newly emerging trends is very important in business process. Large companies are having huge volume of data but starving for knowledge. To overcome the organization current issue, the new breed of technique is required that has intelligence and capabilit...
full textPredicting Customer Loyalty Using Data Mining Techniques
This research aimed on prediction of customer loyalty (Non loyal or Loyal) using the application of data mining in microfinance that helps to build a classification model which supports during loan decision making in the organization. In this study a classification model is built based on the loan data obtained from Joshua Multi Purpose Limited Liability Cooperative (JMPLLC). Experiments using ...
full textUsing Data Mining Techniques in Customer Segmentation
Data mining plays important role in marketing and is quite new. Although this field expands rapidly, data mining is still foreign issue for many marketers who trust only their experiences. Data mining techniques cannot substitute the significant role of domain experts and their business knowledge. In the other words, data mining algorithms are powerful but cannot effectively work without the ac...
full textmining customer dynamics in designing customer segmentation using data mining techniques
one of the main problems in dynamic customer segmentation is finding the dominant patterns of customer movements between different segments via time. accordingly, we concentrate on the customer dynamics in this paper and try to find different groups of customers in transmissions between segments via time. the dominant characteristics of these groups are also investigated. to obtain this objecti...
full textMy Resources
Journal title
volume 15 issue 1
pages -
publication date 2019-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023