CuO nano structures as an ecofriendly nano photo catalyst and antimicrobial agent for environmental remediation

Authors

  • Asha Radhakrishnan Department of Chemistry Devaswam Board Pampa College, Parumala, Pathanamthitta, Kerala, PIN 689626, India.
  • Bhaskaran Beena Nanoscience Research Lab, Department of Chemistry Devaswom Board College Sasthamcotta, Kollam, Kerala, PIN 690522, India.
  • Padmavathi Rejani Nano Science Research Lab, Department of Chemistry, D. B. College, Sasthamcotta, Kollam, Kerala, India.
Abstract:

Present work focuses on the synthesis strategies for different CuO nanostructures along with associated formation mechanisms and their interesting fundamental properties, and promising applications in biological and environmental remediation. We present a variety of synthesis techniques for producing diverse types of CuO nanostructures with various morphologies such as nanoparticles, nanoleaves, nanotubes, and nanoflowers. The effect of synthesis parameters on manipulating the nanoscale features along with the associated growth mechanisms for these unique morphologies is also discussed. The surface, electronic and optical properties of these nanostructures is also detailed. The photocatalytic and antimicrobial applications of these nanostructures are systematically introduced and summarized. Congo red and Malachite green organic dyes were degraded by these CuO nanostructures and it was found that CuO nanoflowers are more favorable for the degradation of Congo red and Malachite Green due to their higher surface sites and surface defects.  Overall, in addition to size, morphology has a significant effect on the properties and applications of nanomaterials. The synthesized novel hierarchical CuO nanostructures with large surface areas and carefully defined surfaces are best suited for treating industrial effluents.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Use of Nano Silver as an Antimicrobial Agent for Cotton

In the present study, an attempt has been made to impart antimicrobial finishing on cotton woven fabric using nano silver solution, at various concentrations: 5 gpl, 10 gpl, 15 gpl, 20 gpl, and 25 gpl in the presence of PVOH (5 gpl, 7.5 gpl and 10 gpl) and an eco-friendly cross linking agent, namely 100gpl glyoxal/65 gpl Appretan N 92111 (binder) applied by the pad-dry-cure technique. Curing co...

full text

Silver metal nano-matrixes as high efficiency and versatile catalytic reactors for environmental remediation

Nano-porous metallic matrixes (NMMs) offer superior surface to volume ratios as well as enhanced optical, photonic, and electronic properties to bulk metallic materials. Such behaviours are correlated to the nano-scale inter-grain metal domains that favour the presence of electronic vacancies. In this work, continuous 3D NMMs were synthesized for the first time through a simple diffusion-reduct...

full text

3D nano-structures for laser nano-manipulation

The resputtering of gold films from nano-holes defined in a sacrificial PMMA mask, which was made by electron beam lithography, was carried out with a dry plasma etching tool in order to form well-like structures with a high aspect ratio (height/width ≈ 3-4) at the rims of the nano-holes. The extraordinary transmission through the patterns of such nano-wells was investigated experimentally and ...

full text

Nano TiO2@SiO2 as an efficient and reusable catalyst for the synthesis of multi-substituted imidazoles

Nano TiO2 supported on SiO2 (Nano TiO2@SiO2) as a solid Lewis acid, was described to be an effective and reusable catalyst for one-pot three-component reaction of benzil, aryl aldehydes and ammonium acetate for the synthesis 2-aryl-4,5-diphenyl-1H-imdazoles synthesis. To explore the high efficacy of the catalytic system the four-component cyclization of benzil, aryl aldehydes, ammonium acetate ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 2

pages  145- 157

publication date 2018-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023