Culture conditions for induction of hairy roots in medicinal plant Coleus blumei
Authors
Abstract:
Hairy root induction in plants has affected by many factors including type, age of explant and bacterial strain. In the present study, the effects of bacterial strains (A4, C58, 15834 and GM), two concentrations (OD600= 0.5 and 1) and two explants (leaves and stems) in hairy root induction of C. blumei were investigated. According to the results of this study, the four strains showed different abilities to induce hairy root. The highest percent of induced roots (85%) was seen in explant treated with C58 strain, at OD600= 0.5 and the lowest induced roots (5%) by using of GM strain at OD600 = 1 and stem explants observed. The highest number of hairy roots per explant (12.94) has shown in leaf explant of leaf inoculated with C58 strain at (OD600 = 0.5) and the lowest number of hairy roots (1/1) was obtained from stem segments treated with GM strain at (OD600 = 1). According to the results of the analysis of variance, the effects of double reciprocal of strain in the concentration and strain in the explant was significant at a 1% probability level. Polymerase Chain Reaction (PCR) analysis using the role gene was performed for identification of the transformed hairy roots. In the lines of transgenic hairy roots, a sharp band of 304‑bp was amplified, but no such amplicon was observed in the untransformed root (negative control) sample. The results of this study indicated that the type of bacteria strain, explant type, and bacterial concentration are important factors in hairy roots induction.
similar resources
Diastereomeric diterpenes from Coleus blumei.
The chloroform extract of the air-dried leaves of Coleus blumei afforded a mixture of diastereomers of a new abietane type diterpene whose structures were elucidated by extensive one and two dimensional (ID, 2D) NMR and mass spectrometry. Acetylation of the mixture afforded a single compound. Antimicrobial tests on the diterpene indicate that it is active against Bacillus subtilis, Pseudomonas ...
full textInduction and growth of hairy roots for the production of medicinal compounds
The development of genetically transformed plant tissue cultures and mainly of roots transformed by Agrobacterium rhizogenes (hairy roots), is a key step in the use of in vitro cultures for the production of secondary metabolites. Hairy roots are able to grow fast without phytohormones, and to produce the metabolites of the mother plant. The conditions of transformation (nature and age of the e...
full textPotential of Different Coleus blumei Tissues for Rosmarinic Acid Production.
Rosmarinic acid is one of the main active components of Coleus blumei and is known to have numerous health benefits. The pharmacological significance of rosmarinic acid and its production through in vitro culture has been the subject of numerous studies. Here, the ability of different tissues to accumulate rosmarinic acid and sustainability in production over long cultivation have been tested. ...
full textRosmarinic acid synthesis in transformed callus culture of Coleus blumei benth.
Agrobacteria mediated Coleus blumei tumour tissues were cultured in vitro on MS medium. Sixteen diversified transformed callus cultures were maintained for several years in the absence of plant growth regulators and antibiotics without affecting the growth rate. Rosmarinic acid was detected spectrophotometrically in all tissue lines but in different quantities. The highest rosmarinic acid accum...
full textInduction of DrsB1-CBDAvr4 Recombinant Protein in Hairy and Adventitious Roots of T1 Transgenic Plants
Hairy and adventitious roots are efficient systems for expressing recombinant proteins. In the present study, the amount of DrsB1-CBDAvr4 recombinant protein in hairy and adventitious root systems was compared. To this end, the effect of different factors on the optimization of culture conditions to obtain adventitious and hairy roots was evaluated in three separate experiments by assessment of...
full textRegulation of Auxin Levels in Coleus blumei by Ethylene.
An investigation of the effects of ethylene pretreatment on several facets of auxin metabolism in Coleus blumei Benth "Scarlet Rainbow" revealed a number of changes presumably induced by the gas. Transport of indoleacetic acid-1-(14)C in excised segments of the uppermost internode was inhibited by about 50%. Decarboxylation of indoleacetic acid-1-(14)C by enzyme breis was not affected by the pr...
full textMy Resources
Journal title
volume 9 issue 3
pages 2849- 2855
publication date 2019-05-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023