Cubic symmetric graphs of orders $36p$ and $36p^{2}$
Authors
Abstract:
A graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. In this paper, we classifyall the connected cubic symmetric graphs of order $36p$ and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.
similar resources
cubic symmetric graphs of orders $36p$ and $36p^{2}$
a graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. in this paper, we classifyall the connected cubic symmetric graphs of order $36p$ and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.
full textSymmetric cubic graphs of small girth
A graph Γ is symmetric if its automorphism group acts transitively on the arcs of Γ, and s-regular if its automorphism group acts regularly on the set of s-arcs of Γ. Tutte (1947, 1959) showed that every cubic finite symmetric cubic graph is s-regular for some s ≤ 5. We show that a symmetric cubic graph of girth at most 9 is either 1-regular or 2-regular (following the notation of Djokovic), or...
full textSymmetric Cubic Graphs of Girth at Most 7
By a symmetric graph we mean a graph X which automorphism group acts transitively on the arcs of X. A graph is s-regular if its automorphism group acts regularly on the set of its s-arcs. Tutte [31, 32] showed that every finite symmetric cubic graph is s-regular for some s ≤ 5. It is well-known that there are precisely five symmetric cubic graphs of girth less than 6. All these graphs can be re...
full textA more detailed classification of symmetric cubic graphs
A graph Γ is symmetric if its automorphism group acts transitively on the arcs of Γ, and s-regular if its automorphism group acts regularly on the set of s-arcs of Γ. Tutte (1947, 1959) showed that every cubic finite symmetric cubic graph is s-regular for some s ≤ 5. Djokovič and Miller (1980) proved that there are seven types of arc-transitive group action on finite cubic graphs, characterised...
full textClassifying cubic symmetric graphs of order 8p or 8p2
A graph is s-regular if its automorphism group acts regularly on the set of its s-arcs. In this paper, we classify the s-regular elementary Abelian coverings of the three-dimensional hypercube for each s ≥ 1 whose fibre-preserving automorphism subgroups act arc-transitively. This gives a new infinite family of cubic 1-regular graphs, in which the smallest one has order 19 208. As an application...
full textNote on cubic symmetric graphs of order 2pn
Let p be a prime and n a positive integer. In [J. Austral. Math. Soc. 81 (2006), 153–164], Feng and Kwak showed that if p > 5 then every connected cubic symmetric graph of order 2p is a Cayley graph. Clearly, this is not true for p = 5 because the Petersen graph is non-Cayley. But they conjectured that this is true for p = 3. This conjecture is confirmed in this paper. Also, for the case when p...
full textMy Resources
Journal title
volume 2 issue 1
pages 55- 63
publication date 2014-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023