Crosstalk of arabinogalactan protein, auxin, gibberellin, and callose in Al-treated Tea seedlings

Authors

Abstract:

Arabinogalactan proteins (AGP) are a class of cell surface plant peptidoglycans which have been implicated in root elongation and signal transduction pathways. AGPs function not only as markers of cellular identity but also as signaling molecules, which might initiate signal transduction. Aluminum promotes the elongation of tea (Camellia sinensis L.) roots. Although some mechanisms by which Al induced root elongation in tea have been reported, there is no direct evidence on the signaling molecules affected by aluminum and triggering signaling.  In this study the possible involvement of AGP in regulation of auxin, gibberellin, and callose contents after exposure of tea seedlings to 400 μM Al was evaluated.  The results show that the Al-induced elongation of tea roots was accompanied by significant increment of the AGP. The maximum content of endogenous GA3 in the tea root was found after 6 h of the Al treatment. The content of IAA, rapidly (6 h of the treatment) and remarkably declined due to Al to 50% of the control. In addition Al exposure for 6 and 24h decreased the callose content of tea seedlings by 20% and 50% of that of the control cells, respectively. However, Al treatment for 6h increased the gene expression (167% of the control), and the activity of β-1,3-glucanase (150% of the control). The findings suggest a cross-talk between AGP, callose, and the two main growth hormones auxin and gibberellin in tea seedling which was started by Al exposure and resulted in elongation of root.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Gibberellin-auxin crosstalk modulates lateral root formation.

Gibberellins (GAs) are a class of phytohormones that impact various aspects of plant growth and development (reviewed in Fleet and Sun, 2005). For more than 50 years, GAs have been known for their dramatic impact on plant stature. Inhibition of GA biosynthesis results in dwarfism (Ninnemann et al., 1964), whereas exogenously applied gibberellic acid promotes internodal stem growth (Brian et al....

full text

: the effect of sericin levels (silk glue protein) on rate of in vitro maturation, fertilization and culture of sheep oocytes

هدف از آزمایش اول بررسی اثر سطوح مختلف سریسین [0 (control), 0.1, 0.5, 1.0, 2.5 %] افزوده شده به محیط , ivm بر cumulus cell expansion، بلوغ هسته و توسعه متوالی جنین، در گوسفندان نژاد سنجابی در فصل تولید مثلی می باشد. از سرگیری میوز به وسیله خارج شدن اولین پولار بادی اندازه گیری و هم چنین درصد رسیدن جنین های دو سلولی به مرحله کلیواژ و بلاستوسیت نیز به عنوان نشانه ای از میزان شایستگی توسعه اولیه ج...

Sites of gibberellin biosynthesis in pea seedlings.

Potential sites of gibberellin biosynthesis in 10-day-old ;Alaska' pea (Pisum sativum L.) seedlings were investigated using a cell-free ezyme system capable of incorporating [(14)C]-mevalonic acid into ent-kaurene. In peas, ent-kaurene is assumed to be a committed intermediate in the gibberellin biosynthetic pathway. Comparative results from enzyme assays using extracts from shoot tips, leaf bl...

full text

Gibberellin and jasmonate crosstalk during stamen development.

Gibberellin (GA) and jasmonate (JA) are two types of phytohormones that play important roles during stamen development. For example, Arabidopsis plants deficient in either of GA or JA develop short stamens. An apparent question to ask is whether GA action and JA action during stamen filament development are independent of each other or are in a hierarchy. Recent studies showed that GA modulates...

full text

Auxin - Gibberellin Interaction in Apical Dominance " 2

Indoleacetic acid and gibberellic acid were added to decapitated lightgrown 'Alaska' pea seedlings as substitutes for the intact apex in the control of apical dotiinance. Of various concentrations and combinations tried, a conrbintation of 1 % indoleacetic acid 1 % gibberellic acid was the most inihibiting to side bud growth. The greatest degree of hormonally induced side bud inhibition was ach...

full text

Gibberellin-auxin interaction in pea stem elongation.

Joint application of gibberellic acid and indole-3-acetic acid to excised stem sections, terminal cuttings, and decapitated plants of a green dwarf pea results in a markedly synergistic growth response to these hormones. Synergism in green tall pea stem sections is comparatively small, although growth is kinetically indistinguishable from similarly treated dwarf sections.Gibberellin-induced gro...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 25

pages  1- 7

publication date 2018-10

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023