Creep Life Forecasting of Weldment

Authors

  • G Pearce Department of Mechanical Engineering and Manufacturing, University of New South Wales, Sydney, Australia
  • J Jelwan Department of Mechanical Engineering and Manufacturing, University of New South Wales, Sydney, Australia
  • M Chowdhry Department of Mechanical Engineering and Manufacturing, University of New South Wales, Sydney, Australia
Abstract:

One of the yet unresolved engineering problems is forecasting the creep lives of weldment in a pragmatic way with sufficient accuracy. There are number of obstacles to circumvent including: complex material behavior, lack of accurate knowledge about the creep material behavior specially about the heat affected zones (HAZ),accurate and multi-axial creep damage models, etc. In general, creep life forecasting may be categorized into two groups, viz., those that are based on microscopic modeling and others that are based on macroscopic (phemenological) concepts. Many different micro-structural processes may cause creep damage .The micro-structural processes highlight the fact that the creep damages can be due to cavity nucleation and growth. Dislocation creep is another mechanism with micro-structural features such as sub-grain formation and growth, new phase formation, such as the Z phase, coarsening leading to the dissolution of the MX phase. This leads to the removal of pinning precipitates, which allow local heterogeneous sub-grain growth, weakening due to this growth and also to the dissolution of the MX. These features normally lead to the earlier formation of tertiary creep and reduced life. Considering welded joints ,the development of models for practical yet sufficiently accurate creep life forecasting based on micro-structural modeling becomes even more complicated due to variation of material in the base, weld and heat-affected-zone (HAZ) and variation of the micro-structure within HAZ and their interactions. So far, and until this date, none of the micro-structural models can forecast the creep life of industrial components with sufficient accuracy in an economic manner. There are several macroscopic (phemenological) models for creep life forecasting, including: time-fraction rule, strain-fraction rule, the reference stress and skeletal stress method, continuum damage model, etc. Each of which has their own limitations .This paper gauges to a multi-axial yet pragmatic and simple model for creep life forecasting weldment operating at high temperature and subjected to an elastic-plastic-creep deformation.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Study of creep cavitation in a stainless steel weldment

A study of creep cavities near reheat cracking in AISI Type 316H austenitic stainless steel headers, removed from long-time high temperature operation in nuclear power plants, is reported. It is shown how application of scanning electron microscopy (SEM), cryogenic fractography and small angle neutron scattering (SANS) can be applied, in a complementary way, to observe and quantify creep cavita...

full text

Determination of Creep Properties for P91 Weldment Materials at 625c

The work presented in this paper is related to the determination of the creep properties for a P91 pipe weldment at 625 C, which forms part of a collaborative European project (Weldon). A Kachanov type, one damage variable, multi-axial material behaviour model was used to represent the material creep behaviour. The uniaxial material constants for the parent material and weld metal were determin...

full text

Review of creep cavitation and rupture of low Cr alloy and its weldment

This paper presents a review of creep cavitation and rupture of low Cr alloy and its weldment, particular in the heat-affected zone (HAZ). Creep damage is one of the serious problems for the high temperature industry. One of the computational approaches is continuum damage mechanics which has been developed and applied complementary to the experimental approach and assists in the safe operation...

full text

The development of computational FE system for creep damage analysis of weldment

A Finite Element Analysis (FEA) system was designed for the analysis of creep deformation and damage evolution in weldment. This project essentially consists of three parts which involves 1) transfer programme development, 2) numerical integration subroutine development, and 3) validation of complete FEA system. Firstly, the development of a user-friendly preand postprocessing transfer programm...

full text

The development of finite element software for creep deformation and damage analysis of weldment

This paper presents the development of finite element software for creep deformation and damage analysis of weldment. The development and benchmark test of the software under plane stress, plane strain, axisymmetric, and 3 dimensional cases were reported in previous work [1]. This paper primarily consists of two parts: 1) the structure of the new FE software and the existing FE library applied ...

full text

The Fracture Mechanics Concept of Creep and Creep/Fatigue Crack Growth in Life Assessment

There is an increasing need to assess the service life of components containing defect which operate at high temperature. This paper describes the current fracture mechanics concepts that are employed to predict cracking of engineering materials at high temperatures under static and cyclic loading. The relationship between these concepts and those of high temperature life assessment methods is ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 1

pages  42- 63

publication date 2011-03-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023