Correlating Physicochemical Properties of Commercial Membranes with CO2 Absorption Performance in Gas-Liquid Membrane Contactor

Authors

Abstract:

The gas-liquid membrane contactor (GLMC) is a promising alternative gas absorption/desorption configuration for effective carbon dioxide (CO2 ) capture. The physicochemical properties of membranes may synergistically affect GLMC performances, especially during the long-term operations. In this work, commercial polypropylene (PP) and polyvinylidene fluoride (PVDF) hollow fiber (HF) membranes were applied to explore the effects of their physicochemical properties on long-term CO2 absorption performances in a bench-scale GLMC rig. PP membranes with pore size of 19 nm, thickness of 0.046 mm, and porosity of 58% achieved high CO2 flux when feeding pure CO2 (5.4 and 24.4×10-3 mol/m2 .s using absorbents of water and 1M monoethanolamine (MEA), respectively) whereas PVDF membranes with pore size of 24 nm, thickness of 0.343 mm, and porosity of 84% presented a good CO2 separation performance from the simulated biogas using 1M MEA (6.8×10-3 mol/m2 .s and 99.9% CH4 recovery). When using water as absorbent, the coupled phenomena of membrane wetting and fouling restricted CO2 transport and resulted in continuous flux loss during the long-term operations. When using MEA as absorbent, both PP and PVDF membranes suffered dramatic flux decline. A series of membrane characterization tests revealed that the morphology, pore size, hydrophobicity, and stability of selected commercial membranes were greatly affected by MEA attack during long-term operations. Therefore, the selection criterion of microporous membranes for high-efficiency and long-term stable CO2 absorption in GLMC processes was proposed. It is envisioned that this study can shed light on improving existing membrane fabrication procedures and the application of novel membrane surface modification techniques to facilitate practical applications of the GLMC technology.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Regeneration of СO2 Physical Solvents at Elevated Pressures in Gas-Liquid Membrane Contactor

In the present work, a membrane contactor with asymmetric flat-sheet poly(vinyltrimethylsilane) (PVTMS) membranes was proposed for the CO2 desorption process from physical solvents at elevated trans-membrane pressures. Different solvents were studied: water, a mixture of polyethylene g...

full text

Surface modification of poly(vinylidene fluoride) hollow fibre membranes for biogas purification in a gas–liquid membrane contactor system

The wetting of hollow fibre membranes decreases the performance of the liquid-gas membrane contactor for CO2 capture in biogas upgrading. To solve this problem, in this work, a poly(vinylidene fluoride) (PVDF) hollow fibre membrane for a liquid-gas membrane contactor was coated with a superhydrophobic layer composed of a combination of hydrophobic SiO2 nanoparticles and polydimethylsiloxane (PD...

full text

Polyvinylidene Fluoride Hollow Fiber Membrane Contactor Incorporating Surface Modifying Macromolecule for Carbon Dioxide Stripping from Water

Porous surface modified polyvinylidene ï‌‚uoride (PVDF) hollow fiber membranes are fabricated through a dry-wet phased inversion process. Surface modifying macromolecules (SMM) (1 wt. %) are used as additives in the spinning dope. The performance of the surface modified membrane in contactor application for CO2 stripping from water is assessed through the fabricated gas–liquid membrane contacto...

full text

Study on Commercial Membranes and Sweeping Gas Membrane Distillation for Concentrating of Glucose Syrup

In this work, sweeping gas membrane distillation (SGMD) process was used for concentrating of glucose syrup. The main questions in this work include: is SGMD process practical for concentrating of glucose solution prior the fermentation step in bioethanol process?. and are the commercially available hydrophobic membranes sufficient enough to develop the SGMD process in pilot scale for this issu...

full text

Amine Based CO2 Absorption in Membrane Contactor Using Polyvinyl Pyrrolidone-modified Polysulfone Flat Sheet Membrane: Experimental Study and Mass Transfer Resistance Analysis

Membrane contactor using amine based absorbents is an efficient technology for CO2 separation from gaseous mixtures. A novel porous polysulfone (PSF) flat membrane was prepared via non-solvent phase inversion method. The PSF membrane was modified by adding polyvinyl pyrrolidone (PVP) to the dope solution. The fabricated membrane was used in the serpentine flow field contactor module for CO2 abs...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  30- 39

publication date 2020-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023