Convex structures via convex $L$-subgroups of an $L$-ordered group

Authors

  • H. Liu School of Science, Shandong Jianzhu University, Jinan 250101, P.R.China
  • S. Wang School of Science, Shandong Jianzhu University, Jinan 250101, P.R.China
  • W. Fan School of surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, P.R.China
Abstract:

In this paper, we first characterize the convex $L$-subgroup of an $L$-ordered group by means of fourkinds of cut sets of an $L$-subset. Then we consider the homomorphic preimages and the product of convex $L$-subgroups.After that, we introduce an $L$-convex structure constructed by convex $L$-subgroups.Furthermore, the notion of the degree to which an $L$-subset of an $L$-ordered group is a convex $L$-subgroup is proposed and characterized. An $L$-fuzzy convex structure which results from convex $L$-subgroup degree is imported naturally, and its $L$-fuzzy convexity preserving mappings investigated.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Convex $L$-lattice subgroups in $L$-ordered groups

In this paper, we have focused to study convex $L$-subgroups of an $L$-ordered group. First, we introduce the concept of a convex $L$-subgroup and a convex $L$-lattice subgroup of an $L$-ordered group and give some examples. Then we find some properties and use them to construct convex $L$-subgroup generated by a subset $S$ of an $L$-ordered group $G$ . Also, we generalize a well known result a...

full text

Convex L-lattice subgroups in L-ordered groups

In this paper, we have focused to study convex L-subgroups of an Lordered group. First, we introduce the concept of a convex L-subgroup and a convex L-lattice subgroup of an L-ordered group and give some examples. Then we find some properties and use them to construct convex L-subgroup generated by a subset S of an L-ordered group G . Also, we generalize a well known result about the set of all...

full text

On fuzzy convex lattice-ordered subgroups

In this paper, the concept of fuzzy convex subgroup (resp. fuzzy convex lattice-ordered subgroup) of an ordered group (resp. lattice-ordered group) is introduced and some properties, characterizations and related results are given. Also, the fuzzy convex subgroup (resp. fuzzy convex lattice-ordered subgroup) generated by a fuzzy subgroup (resp. fuzzy subsemigroup) is characterized. Furthermore,...

full text

on fuzzy convex lattice-ordered subgroups

in this paper, the concept of fuzzy convex subgroup (resp. fuzzy convex lattice-ordered subgroup) of an ordered group (resp. lattice-ordered group) is introduced and some properties, characterizations and related results are given. also, the fuzzy convex subgroup (resp. fuzzy convex lattice-ordered subgroup) generated by a fuzzy subgroup (resp. fuzzy subsemigroup) is characterized. furthermore,...

full text

Fuzzy convergence structures in the framework of L-convex spaces

In this paper,  fuzzy convergence theory in the framework of $L$-convex spaces is introduced. Firstly, the concept of $L$-convex remote-neighborhood spaces is introduced and it is shown that the  resulting category is isomorphic to that of $L$-convex spaces. Secondly, by means of $L$-convex ideals, the notion of $L$-convergence spaces is introduced and it is proved that the  category of $L$-con...

full text

Characterizations of $L$-convex spaces

In this paper, the concepts of $L$-concave structures, concave $L$-interior operators and concave $L$-neighborhood systems are introduced. It is shown that the category of $L$-concave spaces and the category of concave $L$-interior spaces are isomorphic, and they are both isomorphic to the category of concave $L$-neighborhood systems whenever $L$ is a completely distributive lattice. Also, it i...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 16  issue 6

pages  75- 87

publication date 2019-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023