Convergence and quantale-enriched categories
Authors
Abstract:
Generalising Nachbin's theory of ``topology and order'', in this paper we continue the study of quantale-enriched categories equipped with a compact Hausdorff topology. We compare these $V$-categorical compact Hausdorff spaces with ultrafilter-quantale-enriched categories, and show that the presence of a compact Hausdorff topology guarantees Cauchy completeness and (suitably defined) codirected completeness of the underlying quantale enriched category.
similar resources
Approximation in quantale-enriched categories
Our work is a foundational study of the notion of approximation inQ-categories and in (U,Q)-categories, for a quantale Q and the ultrafilter monad U. We introduce auxiliary, approximating and Scott-continuous distributors, the way-below distributor, and continuity of Qand (U,Q)-categories. We fully characterize continuous Q-categories (resp. (U,Q)-categories) among all cocomplete Q-categories (...
full textRestriction categories as enriched categories
Article history: Received 27 November 2012 Received in revised form 4 September 2013 Accepted 20 December 2013 Communicated by B.P.F. Jacobs
full textEnriched Indexed Categories
We develop a theory of categories which are simultaneously (1) indexed over a base category S with finite products, and (2) enriched over an S-indexed monoidal category V . This includes classical enriched categories, indexed and fibered categories, and internal categories as special cases. We then describe the appropriate notion of “limit” for such enriched indexed categories, and show that th...
full textFactorization Homology of Enriched ∞-categories
For an arbitrary symmetric monoidal∞-category V, we define the factorization homology of V-enriched∞-categories over (possibly stratified) 1-manifolds and study its basic properties. In the case that V is cartesian symmetric monoidal, by considering the circle and its self-covering maps we obtain a notion of unstable topological cyclic homology, which we endow with an unstable cyclotomic trace ...
full textCauchy Characterization of Enriched Categories
A characterization is given of those bicategories which are biequivalent to bicategories of modules for some suitable base. These bicategories are the correct (non elementary) notion of cosmos, which is shown to be closed under several basic constructions.
full textMy Resources
Journal title
volume 9 issue 1
pages 77- 138
publication date 2018-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023