Contact CR Submanifolds of maximal Contact CR dimension of Sasakian Space Form

Authors

Abstract:

In this paper, we investigate contact CR submanifolds of contact CR dimension in Sasakian space form and introduce the general structure of these submanifolds and then studying structures of this submanifols with the condition  h(FX,Y)+h(X,FY)=g(FX,Y)zeta, for the normal vector field zeta, which is nonzero, and we classify these submanifolds.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Contact CR-warped product submanifolds in generalized Sasakian Space Forms

In [4] B. Y. Chen studied warped product CR-submanifolds in Kaehler manifolds. Afterward, I. Hasegawa and I. Mihai [5] obtained a sharp inequality for the squared norm of the second fundamental form for contact CR-warped products in Sasakian space form. Recently Alegre, Blair and Carriago [1] introduced generalized Sasakian space form. The aim of present paper is to study contact CR-warped prod...

full text

Contact CR-Warped product submanifolds in Kenmotsu space forms

Abstract: In the present paper, we give a necessary and sufficient condition for contact CR-warped product to be contact CR-product in Kenmotsu space forms.

full text

Contact Cr-doubly Warped Product Submanifolds in Kenmotsu Space Forms

Recently, the author established general inequalities for CR-doubly warped products isometrically immersed in Sasakian space forms. In the present paper, we obtain sharp estimates for the squared norm of the second fundamental form (an extrinsic invariant) in terms of the warping functions (intrinsic invariants) for contact CR-doubly warped products isometrically immersed in Kenmotsu space form...

full text

contact cr-warped product submanifolds in kenmotsu space forms

abstract: in the present paper, we give a necessary and sufficient condition for contact cr-warped product to be contact cr-product in kenmotsu space forms.

full text

A Note on Doubly Warped Product Contact CR-Submanifolds in trans-Sasakian Manifolds

Warped product CR-submanifolds in Kählerian manifolds were intensively studied only since 2001 after the impulse given by B.Y. Chen in [2], [3]. Immediately after, another line of research, similar to that concerning Sasakian geometry as the odd dimensional version of Kählerian geometry, was developed, namely warped product contact CR-submanifolds in Sasakian manifolds (cf. [6], [7]). In this n...

full text

RICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM

Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  0- 0

publication date 2020-07

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023