Compressive Strength of Confined Concrete in CCFST Columns

Authors

  • Ali Kheyroddin Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
  • Hosein Naderpour Assistant Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
  • Masoud Ahmadi M.Sc., Faculty of Civil Engineering, Semnan University, Semnan, Iran
Abstract:

This paper presents a new model for predicting the compressive strength of steel-confined concrete on circular concrete filled steel tube (CCFST) stub columns under axial loading condition based on Artificial Neural Networks (ANNs) by using a large wide of experimental investigations. The input parameters were selected based on past studies such as outer diameter of column, compressive strength of unconfined concrete, length of column, wall thickness and tensile yield stress of steel tube. After the learning step, the neural network can be extracted the relationships between the input variables and output parameters. The criteria for stopping the training of the networks are Regression values and Mean Square Error. After constructing networks with constant input neurons but with different number of hidden-layer neurons, the best network was selected. The neural network results are compared with the existing models which showed the results are in good agreement with experiments.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

compressive strength of confined concrete in ccfst columns

this paper presents a new model for predicting the compressive strength of steel-confined concrete on circular concrete filled steel tube (ccfst) stub columns under axial loading condition based on artificial neural networks (anns) by using a large wide of experimental investigations. the input parameters were selected based on past studies such as outer diameter of column, compressive strength...

full text

Compressive Strength Prediction by ANN Formulation Approach for FRP Confined Rectangular Concrete Columns

Enhancement of strength and ductility is the main reason for the extensive use of FRP (fiber reinforced polymer) jackets to provide external confinement to reinforced concrete columns especially in seismic areas. Therefore, numerous researches have been carried out in order to provide a better description of the behavior of FRP confined concrete for practical design purposes. This study present...

full text

the effect of taftan pozzolan on the compressive strength of concrete in the environmental conditions of oman sea (chabahar port)

cement is an essential ingredient in the concrete buildings. for production of cement considerable amount of fossil fuel and electrical energy is consumed. on the other hand for generating one tone of portland cement, nearly one ton of carbon dioxide is released. it shows that 7 percent of the total released carbon dioxide in the world relates to the cement industry. considering ecological issu...

Axial Compressive Strength of Reinforced Concrete Columns Wrapped with Fiber Reinforced Polymers (FRP)

This paper presents the results of a study on the axial compressive strength of columnsstrengthened with FRP wrap. The experimental part of the study included testing 6 reinforcedconcrete columns in two series. The first series comprised three similar circular reinforced concretecolumns strengthened with FRP wrap. The second series consisted of three similar square columns,two with sharp corner...

full text

Acceptance of Concrete Compressive Strength

The new concrete standards give directives regarding the checking if the hardened concrete conforms to the compressive strength requirements of the designed compressive strength class. The acceptance or rejection of conformity is the function of the compressive strength testing methods and the evaluation of the test results. In the paper through examples we show the role of the acceptance proba...

full text

Prediction of Lightweight Aggregate Concrete Compressive Strength

Nowadays, the better performance of lightweight structures during earthquake has resulted in using lightweight concrete more than ever. However, determining the compressive strength of concrete used in these structures during their service through a none-destructive test is a popular and useful method.  One of the main methods of non-destructive testing in the assessment of compressive strength...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 1

pages  106- 113

publication date 2014-02-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023