Composition operators between growth spaces‎ ‎on circular and strictly convex domains in complex Banach spaces‎

Authors

Abstract:

‎Let $\Omega_X$ be a bounded‎, ‎circular and strictly convex domain in a complex Banach space $X$‎, ‎and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$‎. ‎The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$‎ ‎such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$‎ ‎for some constant $C>0$‎, ‎whenever $r_{\Omega_X}$ is the Minkowski‎ ‎functional on $\Omega_X$ and $\nu‎ :‎[0,1)\rightarrow(0,\infty)$‎ ‎is a nondecreasing‎, ‎continuous and unbounded function‎. ‎For complex Banach spaces $X$ and $Y$‎ ‎and a holomorphic map $\varphi:\Omega_X\rightarrow\Omega_Y$‎, ‎put‎ ‎$C_\varphi( f)=f\circ \varphi,f\in\mathcal{H}(\Omega_Y)$‎. ‎We characterize those $\varphi$ for which the composition operator‎ ‎$ C_\varphi:\mathcal{A}^{\omega}(\Omega_Y)\rightarrow\mathcal{A}^{\nu}(\Omega_X)$ is a bounded or compact operator‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Weighted composition operators between growth spaces on circular and strictly convex domain

Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...

full text

weighted composition operators between growth spaces on circular and strictly convex domain

let $omega_x$ be a bounded, circular and strictly convex domain of a banach space $x$ and $mathcal{h}(omega_x)$ denote the space of all holomorphic functions defined on $omega_x$. the growth space $mathcal{a}^omega(omega_x)$ is the space of all $finmathcal{h}(omega_x)$ for which $$|f(x)|leqslant c omega(r_{omega_x}(x)),quad xin omega_x,$$ for some constant $c>0$, whenever $r_{omega_x}$ is the m...

full text

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

full text

Dynamics of non-expansive maps on strictly convex Banach spaces

This paper concerns the dynamics of non-expansive maps on strictly convex finite dimensional normed spaces. By using results of Edelstein and Lyubich, we show that if X = (R, ‖ · ‖) is strictly convex and X has no 1-complemented Euclidean plane, then every bounded orbit of a non-expansive map f : X → X , converges to a periodic orbit. By putting extra assumptions on the derivatives of the norm,...

full text

Strictly Singular Non-compact Operators on Hereditarily Indecomposable Banach Spaces

An example is given of a strictly singular non-compact operator on a Hereditarily Indecomposable, reflexive, asymptotic `1 Banach space. The construction of this operator relies on the existence of transfinite c0-spreading models in the dual of the space.

full text

wavelets, modulation spaces and pseudidifferential operators

مبحث تحلیل زمان-فرکانسی سیگنالها یکی از مهمترین زمینه های مورد بررسی پژوهشگران علوم ÷ایه کاربردی و فنی مهندسی میباشد.در این پایان نامه فضاهای مدولاسیون به عنوان زمینه اصلی این بررسی ها معرفی گردیده اند و نتایج جدیدی که در حوزه های مختلف ریاضی،فیزیک و مهندسی کاربرداساسی و فراوانی دارند استوار و بیان شده اند.به ویژه در این پایان نامه به بررسی و یافتن مقادیر ویژه عملگر های شبه دیفرانسیل با سمبل در...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 2

pages  182- 190

publication date 2020-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023