Composite Nanoscaffolds Modified with Bio-ceramic Nanoparticles (Zn2SiO4) Prompted Osteogenic Differentiation of Human Induced Pluripotent Stem Cells

Authors

  • Ali Salimi Nano biotechnology Research Center, Ba qiyatallah University of Medical Sciences, Tehran, Iran.
  • Kaykhosro Moridi Department of Medical Nanotechnology, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad U niversity (IAUPS), Tehran, Iran.
  • Marzieh Ghollasi Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran.
  • Masoumeh Dodel Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran.
  • Mohsen Korani Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
  • Raheleh Halabian Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Abstract:

Nanofiber scaffolds and bio-ceramic nanoparticles have been widely used in bone tissue engineering. The use of human induced pluripotent stem cells (hiPSCs) on this scaffold can be considered as a new approach in the differentiation of bone tissue. In the present study, a polyaniline-gelatin-polycaprolactone (PANi-GEL-PCL) composite nanoscaffold was made by electrospinning and modified superficially by plasma method. The synthesized nanoscaffold was then coated with willemite's bio-ceramic nanoparticles (Zn2SiO4). The nanoscaffold’s properties were studied by scanning electron microscopy (SEM). Also, nanoparticles characterization was carried out with SEM and dynamic light scattering. The growth and proliferation rate of cells on the synthesized nanoscaffold was examined by MTT assay. Subsequently, hiPSCs were cultured on murine fibroblast cells, incubated in embryoid bodies for 3 days, and placed on the nanoscaffolds. The differentiation potential of hiPSCs was investigated by examination of common bone markers (e.g. alkaline phosphatase, calcium salt precipitation, and alizarin red test) using bone differentiation factors for 14 days. SEM showed the proper structure of electrospinned nanoscaffolds and coating of nanoparticles on the nanoscaffold surface. The results of MTT assay confirmed the growth and proliferation of cells and the biocompatibility of nanofibers. The results of bone indices also showed that differentiation on the composite nanoscaffold coated with willemite's bio-ceramic nanoparticles was dramatically increased in comparison with other groups. Overall, this study demonstrated that PANi-GEL-PCL composite nanoscaffold with willemite's bio-ceramic nanoparticles is a suitable substrate for in vitro growth, proliferation, and differentiation of hiPSCs cells into osteoblasts.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

The potential of human-derived periodontal ligament stem cells to osteogenic differentiation: An In vitro investigation

Background: Periodontal ligament stem cells (PDLSCs) are considered as a type of mesenchymal stem cell that is beneficial target for numerous clinical applications in periodontal tissue regeneration therapy. Materials and Methods: This study examined the effects of dexamethasone (Dex) on human PDLSCs in vitro. PDLSCs obtained from the roots of patient’s teeth were cultured with Dex (0....

full text

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

full text

A Comparative Study of Osteogenic Differentiation Human Induced Pluripotent Stem Cells and Adipose Tissue Derived Mesenchymal Stem Cells

OBJECTIVE Human induced pluripotent stem cells (iPSCs) have been shown to have promising capacity for stem cell therapy and tissue engineering applications. Therefore, it is essential to compare the ability of these cells with the commonly used mesenchymal stem cells (MSC) for bone tissue engineering in vitro. MATERIALS AND METHODS In this experimental study, the biological behavior and osteo...

full text

Effects of Graphene Quantum Dots on the Osteogenic Differentiation of Stem Cells from Human Endometrial

Background and aim: Cell-therapy is an important science because of using to treatment of critical-sized bone defects. Recent studies in this field suggest that human endometrial derived stem cells can be a great source. On the other hand, graphene and its derivatives, mainly graphene quantum dots (GQDs) have recently attracted much attention as effective factors in differentiating stem cells t...

full text

Induced Pluripotent Stem Cells: Challenges and Opportunities

Regenerative capacity of mammals is limited and can rarely regenerate a specific organ or tissue fully. Due to these limitations, regenerative medicine seeks efficient and safe cell sources for regeneration of damaged tissues and organs or treatment for incurable diseases. Human embryonic stem cells (HESCs) hold two important properties called self renewal and pluripotency. However, the use of ...

full text

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 1

pages  0- 0

publication date 2019-05

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023