Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables
author
Abstract:
Let be a sequence of arbitrary random variables with and , for every and be an array of real numbers. We will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on and sequence .
similar resources
complete convergence and some maximal inequalities for weighted sums of random variables
let be a sequence of arbitrary random variables with and , for every and be an array of real numbers. we will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on and sequence .
full textOn the Complete Convergence ofWeighted Sums for Dependent Random Variables
We study the limiting behavior of weighted sums for negatively associated (NA) random variables. We extend results in Wu (1999) and a theorem in Chow and Lai (1973) for NA random variables.
full textOn Complete Convergence for Weighted Sums of -Mixing Random Variables
Copyright q 2010 Wang Xuejun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Some results on complete convergence for weighted sums ∑n i 1 aniXi are presented, where {Xn, n ≥ 1} is a sequence of φ-mixing random variables an...
full textMaximal Inequalities for Associated Random Variables
In a celebrated work by Shao [13] several inequalities for negatively associated random variables were proved. In this paper we obtain some maximal inequalities for associated random variables. Also we establish a maximal inequality for demimartingales which generalizes and improves the result of Christofides [4].
full textStrong Laws for Weighted Sums of Negative Dependent Random Variables
In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.
full textSome exponential inequalities for acceptable random variables and complete convergence
* Correspondence: volodin@math. uregina.ca Department of Mathematics and Statistics, University of Regina, Regina Saskatchewan S4S 0A2, Canada Full list of author information is available at the end of the article Abstract Some exponential inequalities for a sequence of acceptable random variables are obtained, such as Bernstein-type inequality, Hoeffding-type inequality. The Bernsteintype ineq...
full textMy Resources
Journal title
volume 18 issue 4
pages 311- 316
publication date 2007-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023