Comparison of Several Maturation Inducing Factors in Dendritic Cell Differentiation
Authors
Abstract:
Background: Dendritic cells (DCs) are professional antigen presenting cells that have an important role in the initiation of immune response. The use of maturation factors in dendritic cell differentiation provides a promising approach in immunotherapy. Objective: In this study, we compared tumor necrosis factor-α, polyribocytidylic acid, lipopolysacharide and CpG oligonucleotides in inducing dendritic cell maturation. Methods: We generated immature dendritic cells with GM-CSF in combination with IL-4 from peripheral blood mononuclear adherent cells and used tumor necrosis factor-α, polyribocytidylic acid, lipopolysacharide and CpG for the induction of dendritic cell maturation. CD83 maturation marker on the dendritic cells was analyzed by flowcytometry after 7 days. In addition, mixed leukocyte reaction between dendritic cells and T cells was performed by MTT proliferation assay. Results: Flow cytometry results demonstrated a comparable high level of CD83 expression on the mature dendritic cells generated by TNF-α, CpG, Poly I:C, and LPS treatment of the immature dendritic cells. However, a significantly poorer proliferation of lymphocytes cocultured with the Poly I:C-treated DCs was observed compared to the CpG-treated DCs in mixed leukocyte reaction (p=0.026). Conversely, a significantly stronger proliferation of lymphocytes was observed when cocultured with TNF-α-treated DCs compared to the LPS-treated DCs (p=0.025). Conclusion: Our results indicated that all of studied maturation inducing factors can be used in DC maturation but TNF-α and CpG were the preferred in vitro maturation factors. It is concluded that maturation of dendritic cells by CpG motif and TNF-α can be used to regulate immune responses.
similar resources
comparison of several maturation inducing factors in dendritic cell differentiation
background: dendritic cells (dcs) are professional antigen presenting cells that have an important role in the initiation of immune response. the use of maturation factors in dendritic cell differentiation provides a promising approach in immunotherapy. objective: in this study, we compared tumor necrosis factor-α, polyribocytidylic acid, lipopolysacharide and cpg oligonucleotides in inducing d...
full textDendritic Cell Maturation with CpG for Tumor Immunotherapy
Background: Bacterial DNA has immunostimulatory effects on different types of immune cells such as dendritic cells (DCs). Application of DCs as a cellular adjuvant represents a promising approach in the immunotherapy of infectious disease and cancers. Objectives: To investigate the effect of tumor antigen pulsed DCs in the presence of CpG-1826 in treatment of a murine model of cancer. Methods: ...
full textThe Effects of Candida Albicans Cell Wall Protein Fraction on Dendritic Cell Maturation
Back ground: Candida albicans is a member of the normal human microflora. C. albicans cell wall is composed of several protein and carbohydrate components which have been shown to play a crucial role in C. albicans interaction with the host immune system. Major components of C. albican cell wall are carbohydrates such as mannans, β glucans and chitins, and proteins that partially modulate the h...
full textGlucocorticoids affect human dendritic cell differentiation and maturation.
Because dendritic cells (DC) play a major role in the initiation of T cell-mediated immunity, we studied the effects of glucocorticoids, well-known inhibitors of the immune and inflammatory response, on the differentiation and maturation of human DC. DC were differentiated from human monocytes by culture with GM-CSF and IL-4 for 7 days with and without dexamethasone (Dex). Cells treated with De...
full textSirt6 regulates dendritic cell differentiation, maturation, and function
Dendritic cells (DCs) are antigen-presenting cells that critically influence decisions about immune activation or tolerance. Impaired DC function is at the core of common chronic disorders and contributes to reduce immunocompetence during aging. Knowledge on the mechanisms regulating DC generation and function is necessary to understand the immune system and to prevent disease and immunosenesce...
full textMy Resources
Journal title
volume 7 issue 2
pages 83- 87
publication date 2010-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023