Comparison of Performances for Air-Standard Atkinson and Dual Combustion Cycles with Heat Transfer Considerations
Authors
Abstract:
There are heat losses during the cycle of real engine that are neglected in ideal air-standard analysis. In this paper, the effect of heat transfer on the net output work is shown and thermal efficiency of the air-standard Atkinson and the Dual combustion cycles are analyzed. Comparison of performances of the air-standard Atkinson and the Dual combustion cycles with heat transfer considerations are also discussed. We assumed that the compression and power processes are adiabatic and reversible and any convective, conductive and radiative heat transfer to cylinder wall during the heat rejection process may be ignored. The heat loss through the cylinder wall is assumed to occur only during combustion and is further assumed to be proportional to average temperature of both the working fluid and cylinder wall. The results show that the net work output versus efficiency and the maximum net work output and corresponding efficiency bounds are influenced by the magnitude of heat transfer. The results are of importance to provide guidance for the performance evaluation of practical engines.
similar resources
comparison of performances of air standard atkinson, diesel and otto cycles with constant specific heats
in this paper, the effects of input temperature and compression ratio on the net output work and efficiency of the air standard cycles, i.e. atkinson cycle, diesel cycle and otto cycle are analyzed. we assumed that the compression and power processes are adiabatic and reversible and any convective, conductive and radiative heat transfer to cylinder wall during the heat rejection process may be ...
full textComparison of Performances of Air-Standard Atkinson, Diesel and Otto Cycles with Constant Specific Heats
The current paper examines the application of finite-time thermodynamics in order to compare the performance between air-standard cycles, i.e. Atkinson, Diesel and Otto cycles with constant specific heats of working fluid. The effects of input temperature and compression ratio on the net output work and efficiency of the Atkinson cycle, Diesel cycle and Otto cycle are analyzed. It is assumed th...
full textThe Overall Heat Transfer Characteristics of a Double Pipe Heat Exchanger: Comparison of Experimental Data with Predictions of Standard Correlations
The single-phase flow and thermal performance of a double pipe heat exchanger are examined by experimental methods. The working fluid is water at atmospheric pressure. Temperature measurements at the inlet and outlet of the two streams and also at an intermediate point half way between the inlet and outlet is made, using copper-constantan thermocouple wires. Mass flow rates for each stream are ...
full texta comparison of teachers and supervisors, with respect to teacher efficacy and reflection
supervisors play an undeniable role in training teachers, before starting their professional experience by preparing them, at the initial years of their teaching by checking their work within the proper framework, and later on during their teaching by assessing their progress. but surprisingly, exploring their attributes, professional demands, and qualifications has remained a neglected theme i...
15 صفحه اولinvestigation of single-user and multi-user detection methods in mc-cdma systems and comparison of their performances
در این پایان نامه به بررسی روش های آشکارسازی در سیستم های mc-cdma می پردازیم. با توجه به ماهیت آشکارسازی در این سیستم ها، تکنیک های آشکارسازی را می توان به دو دسته ی اصلی تقسیم نمود: آشکارسازی سیگنال ارسالی یک کاربر مطلوب بدون در نظر گرفتن اطلاعاتی در مورد سایر کاربران تداخل کننده که از آن ها به عنوان آشکارساز های تک کاربره یاد می شود و همچنین آشکارسازی سیگنال ارسالی همه ی کاربران فعال موجود در...
My Resources
Journal title
volume 13 issue 2
pages 5- 19
publication date 2012-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023