Comparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests
Authors
Abstract:
Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-ground biomass at moderate spatial resolution across the globe. The combination of the sample plots and image data has been widely used to map forest above-ground biomass at local, regional, national, and global scales. Many predictive methods have been suggested to estimate forest aboveground biomass from sparse sampling points into continuous surfaces, ranging from regression methods such as Geographically Weighted Regression (GWR) and geostatistical methods such as Regression Kriging (RK). Researchers have been particularly interested in understanding the causes and effects in ecosystem functions of spatial autocorrelation and heterogeneity, over the past decade. Where in forestry data include spatial autocorrelation and heterogeneity, the independence and homogeneity assumptions of standard statistical approaches, such as ordinary least squares (OLS), may be violated. Many spatial models (such as Geographically Weighted Regression and Regression Kriging) have been developed in recent years to discuss spatial effects in the relationships between variables. Spatial models can be divided into global and local models depending on the spatial scales used in the modeling process. A global model usually involves, a tool to model spatial autocorrelation between observations in neighboring locations, through either a covariance matrix that can be calculated using a variogram or spatial weight matrix based on neighborhood proximity. Global models, of course, do not well represent spatial differences at any given location and may not be successful in dealing with spatial heterogeneity. By comparison, local models, such as geographically weighted regression, adequate a regression relationship within a given bandwidth for each spatial location using the neighbors. From the relationships between variables, the local models are more useful in exploring locational spatial variation (heterogeneity). In the present study, using a Landsat 8-OLI image, and Geographically Weighted Regression and Regression Kriging modeling were compared for the estimation of aboveground forest biomass. In this study, we gathered aboveground biomass data from a total of 184 (30 × 30 m) sample plots in Zagros forests in the Kohgiluyeh and Boyer-Ahmad Province. The datasets corresponded to the Landsat 8 image pixel values. We applied the species-specific allometric equations for individual trees to estimate forest aboveground biomass. The aboveground biomass at plot-level is simply the summation for all trees within the same plot. The estimates were evaluated by ten-fold cross-validation and performances of the model was evaluated using the coefficient of determination (R2) and relative root mean squared error (RMSE%). The efficiency of the predictions can be described with the scatterplots showing the relationships between the forest above-ground biomass estimates and reference data. Results showed 1) that Geographically Weighted Regression (R2 = 0.61, RMSE%= 22) was a fairly better approach and could provide promising results for the prediction of forest above-ground biomass compared to Regression Kriging (R2 = 0.47, RMSE%= 28) and 2) scatterplots depicted that the problems of overestimation and underestimation for all the prediction were apparent.
similar resources
Comparison of Geographically Weighted Regression and Regression Kriging for Estimating the Spatial Distribution of Soil Organic Matter
Soil organic matter (SOM) is an important component of soils, and knowing the spatial distribution and variation of SOM is the premise for sustainably utilizing soils. The objective of this study was to compare geographically weighted regression (GWR) with regression kriging (RK) for estimating the spatial distribution of SOM using field-sample data in SOM and auxiliary data in correlated envir...
full textthe innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran
آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...
15 صفحه اولEstimating Loess Plateau Average Annual Precipitation with Multiple Linear Regression Kriging and Geographically Weighted Regression Kriging
Estimating the spatial distribution of precipitation is an important and challenging task in hydrology, climatology, ecology, and environmental science. In order to generate a highly accurate distribution map of average annual precipitation for the Loess Plateau in China, multiple linear regression Kriging (MLRK) and geographically weighted regression Kriging (GWRK) methods were employed using ...
full textthe evaluation and comparison of two esp textbooks available on the iranian market for teaching english to the students of medicine
abstract this study evaluated and compared medical terminology and english for the students of medicine (ii) as two representatives of the textbooks available on the iranian market for teaching english to the students of medicine. this research was performed on the basis of a teacher’s and a number of students’ attitudes and the students’ needs analysis for two reasons: first, to investigate...
15 صفحه اولthe role of russia in transmission of energy from central asia and caucuses to european union
پس ازفروپاشی شوروی،رشد منابع نفت و گاز، آسیای میانه و قفقاز را در یک بازی ژئوپلتیکی انرژی قرار داده است. با در نظر گرفتن این منابع هیدروکربنی، این منطقه به یک میدانجنگ و رقابت تجاری برای بازی های ژئوپلتیکی قدرت های بزرگ جهانی تبدیل شده است. روسیه منطقه را به عنوان حیات خلوت خود تلقی نموده و علاقمند به حفظ حضورش می باشد تا همانند گذشته گاز طبیعی را به وسیله خط لوله مرکزی دریافت و به عنوان یک واس...
15 صفحه اولon the comparison of keyword and semantic-context methods of learning new vocabulary meaning
the rationale behind the present study is that particular learning strategies produce more effective results when applied together. the present study tried to investigate the efficiency of the semantic-context strategy alone with a technique called, keyword method. to clarify the point, the current study seeked to find answer to the following question: are the keyword and semantic-context metho...
15 صفحه اولMy Resources
Journal title
volume 9 issue 3
pages 113- 124
publication date 2020-02
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023