Comparative study on solving fractional differential equations via shifted Jacobi collocation method
Authors
Abstract:
In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equation are approximated by shifted Jacobi polynomials. Then, operational matrices and spectral collocation method are applied to obtain a linear or nonlinear system of algebraic equations. System of algebraic equations can be simultaneously solved (e.g. using Mathematica^{TM}). Main characteristic behind of the this technique is that only a small number of shifted Jacobi polynomials is needed to obtain a satisfactory result which demonstrates the validity and efficiency of the method. Comparison between this method and some other methods confirm the good performance of the presented method. Also, this method is generalized for the multi-point fractional differential equation.
similar resources
comparative study on solving fractional differential equations via shifted jacobi collocation method
in this paper, operational matrices of riemann-liouville fractional integration and caputo fractional differentiation for shifted jacobi polynomials are considered. using the given initial conditions, we transform the fractional differential equation (fde) into a modified fractional differential equation with zero initial conditions. next, all the existing functions in modified differential equ...
full textComparative Study on Solving Fractional Differential Equations via Shifted Jacobi Collocation Method
In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...
full textSolving nonlinear space-time fractional differential equations via ansatz method
In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...
full textWavelet Collocation Method for Solving Multiorder Fractional Differential Equations
The operational matrices of fractional-order integration for the Legendre and Chebyshev wavelets are derived. Block pulse functions and collocation method are employed to derive a general procedure for forming these matrices for both the Legendre and the Chebyshev wavelets. Then numerical methods based on wavelet expansion and these operational matrices are proposed. In this proposed method, by...
full textCollocation Method via Jacobi Polynomials for Solving Nonlinear Ordinary Differential Equations
We extend a collocation method for solving a nonlinear ordinary differential equation ODE via Jacobi polynomials. To date, researchers usually use Chebyshev or Legendre collocation method for solving problems in chemistry, physics, and so forth, see the works of Doha and Bhrawy 2006, Guo 2000, and Guo et al. 2002 . Choosing the optimal polynomial for solving every ODEs problem depends on many f...
full textSolving the fractional integro-differential equations using fractional order Jacobi polynomials
In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...
full textMy Resources
Journal title
volume 43 issue 2
pages 535- 560
publication date 2017-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023