Common Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain
Authors
Abstract:
Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before using these available data. In this paper, we introduce the SecondBrain as a new lightweight and simplified module that can easily apply various major analysis on EEG data with common data formats. The characteristics of the SecondBrain shows that it is suitable for everyday usage with medium analyzing power. It is easy to learn and accept many data formats. The SecondBrain module has been developed with Python and has the power to windowing data, whitening transform, independent component analysis (ICA), downloading the public datasets, computing common spatial patterns (CSP) and other useful analysis. The SecondBrain, also, employs a common spatial pattern (CSP) to extract features and classifying the EEG MI-based data through support vector machine (SVM). We achieved a satisfactory result in terms of speed and performance.
similar resources
Research on Classification Method of Combining Support Vector Machine and Genetic Algorithm for Motor Imagery EEG
The support vector machine (SVM) shows many unique advantages in solving the small sample, nonlinear and high dimensional pattern recognition problems, and it is very suitable to solve the classification problem in motor imagery EEG. For SVM using radial basis function (RBF) kernel, two parameters had to be selected beforehand: the trade-off parameter C and the kernel parameter σ. The tradition...
full textSupport Vector Machine with spatial regularization for pixel classification
We propose in this work to regularize the output of a svm classifier on pixels in order to promote smoothness in the predicted image. The learning problem can be cast as a semi-supervised SVM with a particular structure encoding pixel neighborhood in the regularization graph. We provide several optimization schemes in order to solve the problem for linear SVM with `2 or `1 regularization and sh...
full textMultisubject Learning for Common Spatial Patterns in Motor-Imagery BCI
Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern filter (CSP) as preprocessing step before feature extraction and classification. The CSP method is a supervised algorithm and therefore needs subject-specific training data for calibration, which is very time consuming to collect. In order to reduce the amount of calibration data that is needed for a ne...
full textModeling and design of a diagnostic and screening algorithm based on hybrid feature selection-enabled linear support vector machine classification
Background: In the current study, a hybrid feature selection approach involving filter and wrapper methods is applied to some bioscience databases with various records, attributes and classes; hence, this strategy enjoys the advantages of both methods such as fast execution, generality, and accuracy. The purpose is diagnosing of the disease status and estimating of the patient survival. Method...
full textLocal Temporal Correlation Common Spatial Patterns for Single Trial EEG Classification during Motor Imagery
Common spatial pattern (CSP) is one of the most popular and effective feature extraction methods for motor imagery-based brain-computer interface (BCI), but the inherent drawback of CSP is that the estimation of the covariance matrices is sensitive to noise. In this work, local temporal correlation (LTC) information was introduced to further improve the covariance matrices estimation (LTCCSP). ...
full textMargin-based Feature Selection Techniques for Support Vector Machine Classification
Feature selection for classification working in high-dimensional feature spaces can improve generalization accuracy, reduce classifier complexity, and is also useful for identifying the important feature “markers”, e.g., biomarkers in a bioinformatics or biomedical context. For support vector machine (SVM) classification, a widely used feature selection technique is recursive feature eliminatio...
full textMy Resources
Journal title
volume 32 issue 9
pages 1284- 1289
publication date 2019-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023