Combined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
Authors
Abstract:
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission wavelengths in the range 300–500 nm were obtained. The figures of merit for the developed model were evaluated. High performance liquid chromatography (HPLC) technique was also used as a standard method. Accuracy of the method was investigated by analysis of the serum samples spiked with various concentration of IBF and an average relative error of prediction of 0.18% was obtained. The results indicated that the proposed method is an interesting alternative to the traditional techniques normally used for determination of IBF such as HPLC.
similar resources
Modelling of some soil physical quality indicators using hybrid algorithm principal component analysis - artificial neural network
One of the important issues in the analysis of soils is to evaluate their features. In estimation of the hardly available properties, it seems the using of Data mining is appropriate. Therefore, the modelling of some soil quality indicators, using some of the early features of soil which have been proved by some researchers, have been considered. For this purpose, 140 disturbed and 140 undistur...
full textscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Facial Expression Classification Based on Multi Artificial Neural Network and Two Dimensional Principal Component Analysis
Facial expression classification is a kind of image classification and it has received much attention, in recent years. There are many approaches to solve these problems with aiming to increase efficient classification. One of famous suggestions is described as first step, project image to different spaces; second step, in each of these spaces, images are classified into responsive class and th...
full textHuman Facial Expression Recognition based on Principal Component Analysis and Artificial Neural Network
In recent years there has been a growing interest in improving aspects of the interaction between humans and computers. The facial expressions play an essential role in social interactions with other human beings. As indicated by Mehrabian [1], in face-to-face human communication only 7% of the communicative message is due to linguistic language, 38% is due to paralanguage, while 55% of it is t...
full textanalysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولMy Resources
Journal title
volume 17 issue 3
pages 864- 882
publication date 2018-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023