COLLIDING BODIES OPTIMIZATION FOR DESIGN OF ARCH DAMS WITH FREQUENCY LIMITATIONS

Authors

  • A. Kaveh
  • V.R. Mahdavi
Abstract:

In this paper, optimal design of arch dams is performed under frequency limitations. Colliding Bodies Optimization (CBO), a recently developed meta-heuristic optimization method, which has been successfully applied to several structural problems, is revised and utilized for finding the best feasible shape of arch dams. The formulation of CBO is derived from one-dimensional collisions between bodies, where each agent solution is considered as the massed object or body. The design procedure aims to obtain minimum weight of arch dams subjected to natural frequencies, stability and geometrical limitations. Two arch dam examples from the literature are examined to verify the suitability of the design procedure and to demonstrate the effectiveness and robustness of the CBO in creating optimal design for arch dams. The results of the examples show that CBO is a powerful method for optimal design of arch dams.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Colliding Bodies Optimization for Design of Arch Dams with Frequency Limitations

In this paper, optimal design of arch dams is performed under frequency limitations. Colliding Bodies Optimization (CBO), a recently developed meta-heuristic optimization method, which has been successfully applied to several structural problems, is revised and utilized for finding the best feasible shape of arch dams. The formulation of CBO is derived from one-dimensional collisions between bo...

full text

OPTIMUM DESIGN OF ARCH DAMS FOR FREQUENCY LIMITATIONS

An efficient methodology is proposed to find optimal shape of arch dams on the basis of constrained natural frequencies. The optimization is carried out by virtual sub population (VSP) evolutionary algorithm employing real values of design variables. In order to reduce the computational cost of the optimization process, the arch dam natural frequencies are predicted by properly trained back pro...

full text

OPTIMAL DESIGN OF ARCH DAMS FOR FREQUENCY LIMITATIONS USING CHARGED SYSTEM SEARCH AND PARTICLE SWARM OPTIMIZATION

In recent years, the importance of economical considerations in the field of dam engineering has motivated many researchers to propose new methods for minimizing the cost of dames and in particular arch dams. This paper presents a method for shape optimization of double curvature arch dams corresponding to minimum construction cost while satisfying different constraints such as natural frequenc...

full text

Optimum Design of Arch Dams for Frequency Limitations

An efficient methodology is proposed to find optimal shape of arch dams on the basis of constrained natural frequencies. The optimization is carried out by virtual sub population (VSP) evolutionary algorithm employing real values of design variables. In order to reduce the computational cost of the optimization process, the arch dam natural frequencies are predicted by properly trained back pro...

full text

HYBRID COLLIDING BODIES OPTIMIZATION AND SINE COSINE ALGORITHM FOR OPTIMUM DESIGN OF STRUCTURES

Colliding Bodies Optimization (CBO) is a population-based metaheuristic algorithm that complies physics laws of momentum and energy. Due to the stagnation susceptibility of CBO by premature convergence and falling into local optima, some meritorious methodologies based on Sine Cosine Algorithm and a mutation operator were considered to mitigate the shortcomings mentioned earlier. Sine Cosine Al...

full text

OPTIMAL DESIGN OF JACKET SUPPORTING STRUCTURES FOR OFFSHORE WIND TURBINES USING ENHANCED COLLIDING BODIES OPTIMIZATION ALGORITHM

Structural optimization of offshore wind turbine structures has become an important issue in the past years due to the noticeable developments in offshore wind industry. However, considering the offshore wind turbines’ size and environment, this task is outstandingly difficult. To overcome this barrier, in this paper, a metaheuristic algorithm called Enhanced Colliding Bodies Optimization...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 4

pages  473- 490

publication date 2014-11

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023