Cohen-Macaulay-ness in codimension for simplicial complexes and expansion functor

author

  • R. Rahmati-Asghar Department of Mathematics, Faculty of Basic Sciences, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran, and, School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran.
Abstract:

In this paper we show that expansion of a Buchsbaum simplicial complex is $CM_t$, for an optimal integer $tgeq 1$. Also, by imposing extra assumptions on a $CM_t$ simplicial complex, we provethat it can be obtained from a Buchsbaum complex.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

cohen-macaulay-ness in codimension for simplicial complexes and expansion functor

in this paper we show that expansion of a buchsbaum simplicial complex is $cm_t$, for an optimal integer $tgeq 1$. also, by imposing extra assumptions on a $cm_t$ simplicial complex, we provethat it can be obtained from a buchsbaum complex.

full text

On the Multiplicity Conjecture for Non-cohen-macaulay Simplicial Complexes

We prove a reformulation of the multiplicity upper bound conjecture and use that reformulation to prove it for three-dimensional simplicial complexes and homology manifolds with many vertices. We provide necessary conditions for a Cohen-Macaulay complex with many vertices to have a pure minimal free resolution and a characterization of flag complexes whose minimal free resolution is pure.

full text

Algebraic Shifting and Sequentially Cohen-Macaulay Simplicial Complexes

Björner and Wachs generalized the definition of shellability by dropping the assumption of purity; they also introduced the h-triangle, a doubly-indexed generalization of the h-vector which is combinatorially significant for nonpure shellable complexes. Stanley subsequently defined a nonpure simplicial complex to be sequentially Cohen-Macaulay if it satisfies algebraic conditions that generaliz...

full text

Simple Cohen-Macaulay Codimension 2 Singularities

In this article, we provide a complete list of simple isolated CohenMacaulay codimension 2 singularities together with a list of adjacencies which is complete in the case of fat point and space curve singularities.

full text

Cohen-macaulay Cell Complexes

We show that a finite regular cell complex with the intersection property is a Cohen-Macaulay space iff the top enriched cohomology module is the only nonvanishing one. We prove a comprehensive generalization of Balinski’s theorem on convex polytopes. Also we show that for any Cohen-Macaulay cell complex as above, although there is now generalization of the Stanley-Reisner ring of simplicial co...

full text

A non-partitionable Cohen-Macaulay simplicial complex

A long-standing conjecture of Stanley states that every Cohen– Macaulay simplicial complex is partitionable. We disprove the conjecture by constructing an explicit counterexample. Due to a result of Herzog, Jahan and Yassemi, our construction also disproves the conjecture that the Stanley depth of a monomial ideal is always at least its depth.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 42  issue 1

pages  223- 232

publication date 2016-02-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023