Characterization of $(delta‎, ‎varepsilon)$-double derivation on rings ‎and ‎algebras

Authors

  • A. Niknam Department of Mathematics, Ferdowsi University of Mashhad and Center of Excellence in Analysis on Algebraic Structures (CEAAS) Ferdowsi University, Mashhad, Iran
  • Z. Jokar Department of Mathematics, Mashhad Branch, Islamic Azad University-Mashhad, Iran
Abstract:

This paper is an attempt to prove the following result:Let $n>1$ be an integer and let $mathcal{R}$ be a $n!$-torsion-free ring with the identity element. Suppose that $d, delta, varepsilon$ are additive mappings satisfyingbegin{equation}d(x^n) = sum^{n}_{j=1}x^{n-j}d(x)x^{j-1}+sum^{n-1}_{j=1}sum^{j}_{i=1}x^{n-1-j}Big(delta(x)x^{j-i}varepsilon(x)+varepsilon(x)x^{j-i}delta(x)Big)x^{i-1}quadend{equation}for all $x in mathcal{R}$. If $delta(e) = varepsilon(e) = 0$, then $d$ is a Jordan $(delta, varepsilon)$-double derivation. In particular, if $mathcal{R}$ is a semiprime algebra and further, $delta(x) varepsilon(x) + varepsilon(x) delta(x) = frac{1}{2}Big[(delta varepsilon + varepsilon delta)(x^2) - (delta varepsilon(x) + varepsilon delta(x))x - x (delta varepsilon(x) + varepsilon delta(x))Big]$ holds for all $x in mathcal{R}$, then $d - frac{delta varepsilon + varepsilon delta}{2}$ is a derivation on $mathcal{R}$.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Characterization of $delta$-double derivations on rings and algebras

The main purpose of this article is to offer some characterizations of $delta$-double derivations on rings and algebras. To reach this goal, we prove the following theorem:Let $n > 1$ be an integer and let $mathcal{R}$ be an $n!$-torsion free ring with the identity element $1$. Suppose that there exist two additive mappings $d,delta:Rto R$ such that $$d(x^n) =Sigma^n_{j=1} x^{n-j}d(x)x^{j-1}+Si...

full text

Generalized sigma-derivation on Banach algebras

Let $mathcal{A}$ be a Banach algebra and $mathcal{M}$ be a Banach $mathcal{A}$-bimodule. We say that a linear mapping $delta:mathcal{A} rightarrow mathcal{M}$ is a generalized $sigma$-derivation whenever there exists a $sigma$-derivation $d:mathcal{A} rightarrow mathcal{M}$ such that $delta(ab) = delta(a)sigma(b) + sigma(a)d(b)$, for all $a,b in mathcal{A}$. Giving some facts concerning general...

full text

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

On Derivation Algebras of Malcev Algebras and Lie Triple Systems

W. H. Davenport has shown that the derivation algebra 3)(4) of a semisimple Malcev algebra A of characteristic 0 acts completely reducibly on A. The purpose of the present note is to characterize those Malcev algebras which have such derivation algebras as those whose radical is central and to obtain the same result for Lie triple systems. Analogous results are known to hold for standard and al...

full text

Derivations in semiprime rings and Banach algebras

Let $R$ be a 2-torsion free semiprime ring with extended centroid $C$, $U$ the Utumi quotient ring of $R$ and $m,n>0$ are fixed integers. We show that if $R$ admits derivation $d$ such that $b[[d(x), x]_n,[y,d(y)]_m]=0$ for all $x,yin R$ where $0neq bin R$, then there exists a central idempotent element $e$ of $U$ such that $eU$ is commutative ring and $d$ induce a zero derivation on $(1-e)U$. ...

full text

synthesis and characterization of some macrocyclic schiff bases

ماکروسیکلهای شیف باز از اهمیت زیادی در شیمی آلی و دارویی برخوردار می باشند. این ماکروسیکلها با دارابودن گروه های مناسب در مکانهای مناسب می توانند فلزاتی مثل مس، نیکل و ... را در حفره های خود به دام انداخته، کمپلکسهای پایدار تولید نمایند. در این پایان نامه ابتدا یک دی آلدئید آروماتیک از گلیسیرین تهیه می شود و در مرحله بعدی واکنش با دی آمینهای آروماتیک و یا آلیفاتیک در رقتهای بسیار زیاد منجر به ت...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 06  issue 03

pages  191- 198

publication date 2017-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023