Characteristics of PANi/rGO Nanocomposite as Protective Coating and Catalyst in Dye-sensitized Solar Cell Counter Electrode Deposited on AISI 1086 Steel Substrate

Authors

  • A. H. Yuwono Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia ; Tropical Renewable Energy Center, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia
  • A. Ridhova Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia
  • A. Udhiarto Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia
  • N. Sofyan Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia ; Tropical Renewable Energy Center, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia
  • R. A. Nugraha Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia
Abstract:

One of the possibilities to mass-produce dye-sensitized solar cell (DSSC) device is if it could be embedded to the area atop metal roof. However, the use of metal substrate is constrained by the corrosion caused by the electrolyte solution used in the DSSC device such as iodide/tri-iodide (I-/I3-). In this study, we propose the utilization of polyaniline/reduced graphene oxide (PANi/rGO) nanocomposite as protective coating and at the same time as catalyst for the DSSC counter electrode on AISI 1086 steel substrates. The work was started by synthesizing PANi and rGO and assembling the PANi/rGO nanocomposite in a DSSC device. The characterization was performed using X-ray diffraction (XRD) for crystal structure, infrared (FTIR) for functional groups, scanning electron microscope (SEM) for surface morphology, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) for corrosion testing, and semiconductor parameter analyzer (SPA) for the DSSC device performance. The result showed that the decrease of corrosion rates in AISI 1086 steel was proportional to the rGO concentrations in PANi/rGO nanocomposites. The lowest corrosion rate was obtained at the highest rGO composition, i.e. PANi/rGO 8 wt% with corrosion rate (CR) of 0.2 mm/year and protection efficiency of 80.3 %. The DSSC performance test revealed that PANi/rGO composite could be used as an alternative catalyst for I-/I3- based redox electrolyte in the DSSC solar cell applications in replacement for platinum. The highest power conversion efficiency of 5.38 % was obtained from PANi/rGO 4 wt%.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Counter Electrode for Dye-sensitized Solar Cells

Improved Photocurrent of a Poly (3,4-ethylenedioxythiophene)-ClO4 /TiO2 Thin Filmmodifi ed Counter Electrode for Dye-sensitized Solar Cells Sho Sakurai, Yuka Kawamata, Masashi Takahashi and Koichi Kobayashi 2* 1 Department of Chemistry and Energy Engineering, Tokyo City University, Tokyo 158-8557, JAPAN 2 Research Center for Energy and Environmental Science, Advance Research Laboratory, Tokyo C...

full text

Dye-sensitized solar cell with energy storage function through PVDF/ZnO nanocomposite counter electrode.

Dye-sensitized solar cells with an energy storage function are demonstrated by modifying its counter electrode with a poly (vinylidene fluoride)/ZnO nanowire array composite. This simplex device could still function as an ordinary solar cell with a steady photocurrent output even after being fully charged. An energy storage density of 2.14 C g(-1) is achieved, while simultaneously a 3.70% photo...

full text

Recent development of carbon nanotubes materials as counter electrode for dye-sensitized solar cells

Dye-sensitized solar cells present promising low-cost alternatives to the conventional Silicon (Si)-based solar cells. The counter electrode  generally consists of Pt deposited onto FTO plate. Since Pt is rare and expensive metal, nanostructured carbonaceous materials have been widely investigated as a promising alternative to replace it. Carbon nanotubes  have shown significant properties such...

full text

A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells.

Tungsten dioxide (WO(2)) nanorods were synthesized, which showed excellent catalytic activity for the reduction of triiodide to iodide. The dye-sensitized solar cell (DSC) using WO(2) as a counter electrode (CE) reached a high energy conversion efficiency of 7.25%, which can match the performance of the DSC based on a Pt CE.

full text

Composite catalyst of rosin carbon/Fe3O4: highly efficient counter electrode for dye-sensitized solar cells.

A composite catalyst of rosin carbon/Fe3O4 with marvellous morphology was synthesized and applied as a counter electrode (CE) in dye-sensitized solar cells (DSCs), demonstrating notable electrocatalytic activity for the reduction of I3(-). Based on this CE, a high power conversion efficiency of 8.11% was achieved, comparable to that of the traditional Pt CE.

full text

Self-assembled monolayer of graphene/Pt as counter electrode for efficient dye-sensitized solar cell.

Monolayer of PDDA/graphene/PDDA/H(2)PtCl(6) is fabricated on conductive glass using electrostatic layer-by-layer self-assembly technique, which is then converted to graphene/Pt monolayer for use as counter electrode in dye-sensitized solar cell (DSSC). As compared to the sputtered Pt counter electrode, the self-assembled monolayer reduces the Pt amount by about 1000-fold but exhibits comparable...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 31  issue 10

pages  1741- 1748

publication date 2018-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023